
CODER PROPREMENT PDF
Robert C. Martin

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb

CODER PROPREMENT
Transformez vos compétences en programmation

grâce aux principes du code propre.

Écrit par Bookey

En savoir plus sur le résumé de CODER PROPREMENT

Écouter CODER PROPREMENT Livre audio

Scanner pour télécharger

https://www.bookey.app/fr/book/coder-proprement
https://www.bookey.app/fr/audiobook/coder-proprement
https://share.bookey.app/KNYZ6NPRcEb

À propos du livre
Dans "CODER PROPREMENT : Un Manuel de l'Artisanat

Agile en Logiciel," le célèbre expert en logiciels Robert C.

Martin révèle l'importance transformative de l'écriture de code

propre et son impact sur les organisations de développement.

Chaque année, un code mal écrit fait perdre d'innombrables

heures et d'importantes ressources, mais Martin, avec ses

collègues d'Object Mentor, propose une solution à travers une

exploration approfondie des principes de codage agile. Ce

guide perspicace encourage les programmeurs à évaluer de

manière critique leur code en examinant ses forces et ses

faiblesses, tout en remettant en question leurs valeurs

professionnelles et leur engagement envers l'artisanat. Divisé

en trois parties, le livre couvre les principes essentiels du

codage, présente des études de cas complexes pour une

application pratique, et se termine par une précieuse collection

d’heuristiques et de "mauvaises odeurs" de code. Les lecteurs

apprendront à distinguer le bon code du mauvais, à écrire des

fonctions et des classes efficaces, à assurer la lisibilité, à

mettre en œuvre une gestion d'erreurs robuste et à adopter le

développement piloté par les tests. Un ouvrage incontournable

pour les développeurs, les ingénieurs logiciels et quiconque

s'engage à produire du code de haute qualité.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb

À propos de l'auteur
Robert C. Martin, souvent appelé "Oncle Bob", est un

ingénieur logiciel renommé, auteur et conférencier avec plus

de cinq décennies d'expérience dans le domaine de la

programmation informatique et du développement logiciel. Il

est co-fondateur de l'Agile Alliance et un fervent défenseur des

méthodologies agiles et de l'artisanat logiciel. Martin est

surtout connu pour ses œuvres influentes, notamment "CODER

PROPREMENT : Un Guide de l'Artisanat Logiciel Agile", où

il souligne l'importance d'écrire un code clair, maintenable et

efficace. Ses contributions à la communauté des développeurs

vont au-delà de l'écriture, car il a également joué un rôle

majeur dans l'établissement des meilleures pratiques et la

promotion des valeurs de professionnalisme et d'éthique en

programmation. Par ses enseignements et ses écrits, Martin

continue d'inspirer une nouvelle génération de développeurs à

aspirer à l'excellence dans leur métier.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Liste du contenu du résumé

Chapitre 1 : 2 Noms Significatifs

Chapitre 2 : 3 Fonctions

Chapitre 3 : 4 Commentaires

Chapitre 4 : 5 Mise en forme

Chapitre 5 : 6 Objets et Structures de Données

Chapitre 6 : Gestion des erreurs

Chapitre 7 : 8 Limites

Chapitre 8 : 9 Tests Unitaires

Chapitre 9 : 10 Classes

Chapitre 10 : 11 Systèmes

Chapitre 11 : 12 Émergence

Chapitre 12 : 13 Concurrence

Chapitre 13 : 14 Raffinement Successif

Chapitre 14 : 15 Les Internes de JUnit

Chapitre 15 : 16 Refactorisation de SerialDate

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 16 : 17 Odeurs et Heuristiques

Chapitre 17 : A : Concurrence II

Chapitre 18 : B: org.jfree.date.SerialDate

Chapitre 19 : C : Références croisées des heuristiques

Chapitre 20 : Index

Chapitre 21 : Introduction Préalable

Chapitre 22 : 1 Professionnalisme

Chapitre 23 : 2 Dire Non

Chapitre 24 : 3 Dire Oui

Chapitre 25 : 4 Codage

Chapitre 26 : 5 Développement Driven par les Tests

Chapitre 27 : 6 Pratiquer

Chapitre 28 : 7 Tests d'acceptation

Chapitre 29 : 8 Stratégies de test

Chapitre 30 : 9 Gestion du Temps

Chapitre 31 : 10 Estimation

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 32 : 11 La Pression

Chapitre 33 : 12 Collaboration

Chapitre 34 : 13 Équipes et Projets

Chapitre 35 : 14 Mentorat, Apprentissages, et Artisanat

Chapitre 36 : A : Outils

Chapitre 37 : Index

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 1 Résumé : 2 Noms Significatifs

Section Points Clés

Introduction Importance d'un nommage efficace dans le développement logiciel.

Utiliser des Noms Révélateurs
d'Intention

Les noms doivent refléter leur objectif ; des noms clairs réduisent le besoin de
commentaires.

Éviter la Désinformation Les noms doivent être clairs et ne pas être trompeurs ou ambigus.

Faire des Distinctions Significatives Chaque nom doit avoir un but unique pour éviter la confusion.

Utiliser des Noms Prononçables Les noms doivent être faciles à prononcer pour une communication efficace.

Utiliser des Noms Recherchables Éviter les noms d'une seule lettre ; des noms plus clairs sont plus faciles à rechercher.

Éviter les Encodages Éviter d'encoder le type ou la portée dans les noms pour réduire la complexité.

Noms de Méthodes Les noms de méthodes doivent clairement exprimer des actions, en évitant les noms
astucieux.

Choisir un Mot par Concept Utiliser une terminologie cohérente pour éviter la confusion dans le code.

Ajouter un Contexte Significatif Contextualiser les noms au sein des classes/fonctions, mais éviter l'encombrement.

Derniers Mots Un nommage efficace est vital pour la lisibilité ; n'hésitez pas à renommer.

Chapitre 1 : Noms Significatifs

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Introduction

Les noms sont omniprésents dans le développement logiciel.

Ils concernent les variables, les fonctions, les classes, les

packages, et même les fichiers. Par conséquent, il est

essentiel de bien les nommer.

Utilisez des Noms Révélateurs d'Intention

Les noms doivent refléter leur but. Un nom clair élimine le

besoin de commentaires. Par exemple, `int d;` est vague,

tandis que `int elapsedTimeInDays;` est explicite. Un nom

clair simplifie la compréhension du code.

Évitez la Désinformation

Les noms doivent être clairs et ne pas induire en erreur.

Évitez les noms qui pourraient signifier différentes choses

dans différents contextes ou créer de la confusion, par

exemple, nommer une liste qui n'est pas une Liste comme

`accountList`.

Faites des Distinctions Significatives

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Ne modifiez pas les noms arbitrairement juste pour satisfaire

le compilateur. Chaque nom doit avoir un but distinct, évitant

la confusion entre des variables aux noms similaires.

Utilisez des Noms Prononçables

Les noms doivent être faciles à prononcer pour faciliter la

communication. Évitez les conventions de nommage qui

mènent à des abréviations complexes qui ne peuvent pas être

facilement discutées.

Utilisez des Noms Rechercheables

Évitez les noms à une lettre et les constantes numériques qui

sont difficiles à rechercher dans le code. Une constante bien

nommée est plus facile à distinguer.

Évitez les Encodages

Ne codez pas le type ou le scope dans les noms. Les

encodages créent une complexité inutile sans apporter de

valeur, en particulier dans les langages de programmation

modernes avec des systèmes de types forts.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Noms des Méthodes

Les noms des méthodes doivent transmettre des actions (par

exemple, `postPayment`) pour éviter le mappage mental.

Gardez la clarté en évitant des noms astucieux ou

accrocheurs qui obscurcissent leurs fonctions.

Choisissez Un Mot par Concept

Utilisez une terminologie cohérente dans votre base de code

pour éviter la confusion (par exemple, évitez d’utiliser à la

fois `fetch` et `retrieve` pour des fonctions similaires).

Ajoutez un Contexte Significatif

Les noms doivent être contextualisés dans les classes ou les

fonctions. Regroupez les variables connexes pour une

meilleure compréhension, mais évitez un contexte excessif et

inutile qui encombre les noms.

Mots de la Fin

Un nommage efficace peut être difficile, mais il est essentiel

pour la lisibilité. N'hésitez pas à renommer des éléments pour

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

plus de clarté. Utilisez des outils modernes pour maintenir

l'organisation et améliorer la qualité du code.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Exemple

Point clé:Utilisez des noms qui révèlent l'intention

Exemple:Imaginez que vous examinez le code d'un

collègue et que vous tombez sur une variable nommée

`int x;`. Immédiatement, la confusion s'installe : que est

censée représenter cette variable ? Maintenant, imaginez

un scénario différent où vous voyez `int

userAgeInYears;`. Tout à coup, il est crystal clair que

cette variable contient l'âge d'un utilisateur, rendant le

code beaucoup plus compréhensible sans un seul

commentaire. Cet exemple souligne l'importance des

conventions de nommage qui expriment clairement le

but des variables, améliorant ainsi la lisibilité globale du

code.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Pensée critique

Point clé:L'importance des noms significatifs dans le

développement logiciel

Interprétation critique:Robert C. Martin souligne que le

choix de noms efficaces est essentiel dans le

développement logiciel, car cela améliore la lisibilité et

la compréhension du code. Cependant, certains peuvent

argumenter qu'une insistance excessive sur les

conventions de nommage peut faire négliger d'autres

pratiques de codage vitales, telles que la structure du

code et la modularité. Il est intéressant de considérer

d'autres perspectives, comme celles présentées par

Martin Fowler dans "Refactoring: Improving the Design

of Existing Code", qui suggère que, bien que des noms

clairs soient importants, ils doivent également faire

partie d'une préoccupation plus large pour la qualité

générale du code.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 2 Résumé : 3 Fonctions

Section Résumé

Évolution des fonctions La programmation est passée des routines aux fonctions comme principal mode d'organisation du
code.

Compréhension de la
complexité des fonctions

Une fonction encombrante remplie de code dupliqué et de types complexes nuit à la
compréhension, tandis que les fonctions refactorisées clarifient l'intention et restent concises.

Meilleures pratiques
pour les fonctions

 La taille compte: Les fonctions doivent être petites (moins de 20 lignes).
 Responsabilité unique: Chaque fonction doit gérer une seule tâche.
 Niveaux d'abstraction: Maintenez un niveau d'abstraction cohérent.

Composition des
fonctions

Les fonctions doivent se lire comme un récit, garantissant un flux fluide des actions de haut niveau
vers des implémentations spécifiques.

Évitement des
instructions switch

Les instructions switch doivent être évitées car elles diminuent la clarté ; le polymorphisme est
préféré pour gérer les variations.

Conventions de
nommage

Les noms des fonctions doivent être descriptifs pour clairement transmettre les actions et établir
des attentes.

Arguments des fonctions

 Minimiser les arguments: Visez zéro argument ; 1-2 acceptables, évitez d'en avoir plus
de 3.
 Évitez les arguments de sortie: Privilégiez les valeurs de retour pour éviter toute
confusion.
 Distinction entre commandes et requêtes: Les fonctions doivent soit agir, soit retourner
des informations, mais pas les deux.

Stratégies de gestion des
erreurs

Utilisez des exceptions au lieu de codes d'erreur pour un flux de contrôle plus propre, en gardant la
gestion des exceptions distincte de la logique métier.

Conclusion Les fonctions doivent être concises et significatives, ressemblant à des verbes dans une langue,

https://share.bookey.app/KNYZ6NPRcEb

Section Résumé

pour faciliter une communication efficace dans le code.

Chapitre 2 : Fonctions

Évolution des Fonctions

La programmation a évolué des routines vers les fonctions,

devenant ainsi la principale méthode d'organisation des

pratiques de codage.

Comprendre la Complexité des Fonctions

La fonction présentée dans la Liste 3-1 est encombrante,

remplie de code dupliqué, de chaînes étranges et de types de

données compliqués, rendant difficile sa compréhension

rapide. En revanche, la Liste 3-2 simplifie cela en

refactorisant la fonction d'origine, clarifiant son objectif tout

en restant concise.

Meilleures Pratiques pour les Fonctions

-

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

La Taille Compte
 : Les fonctions doivent être petites, idéalement de moins de

20 lignes, ce qui permet une meilleure lisibilité et

maintenabilité.

-

Responsabilité Unique
 : Une fonction doit accomplir une seule tâche ou suivre un

seul concept, réduisant ainsi la complexité et améliorant la

clarté.

-

Niveaux d'Abstraction
 : Les fonctions doivent maintenir un niveau d'abstraction

cohérent sans mélanger des opérations de haut niveau avec

des détails de bas niveau.

Composition des Fonctions

Les fonctions doivent se lire comme une narration,

progressant des actions conceptuelles de haut niveau vers des

implémentations spécifiques, suivant une approche

descendante. Cela crée un flux fluide, rendant le code plus

facile à lire et à comprendre.

Évitement des Instructions Switch

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Les instructions switch introduisant plusieurs flux dans une

fonction sont déconseillées, car elles diminuent la clarté. À la

place, utiliser le polymorphisme peut aider à gérer différentes

opérations de manière claire.

Conventions de Nommage

Choisir des noms descriptifs est crucial pour la clarté. Les

noms de fonction doivent transmettre clairement leurs

actions, aidant à établir des attentes avant que la fonction ne

soit lue.

Arguments de Fonction

-

Minimiser les Arguments
 : Les fonctions ne devraient idéalement avoir aucun

argument, un ou deux étant acceptables. Plus de trois

devraient généralement être évités en raison de la complexité.

-

Éviter les Arguments de Sortie
 : Les fonctions devraient utiliser des valeurs de retour au lieu

d'arguments de sortie pour prévenir toute confusion sur les

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

données échangées.

-

Séparer Commandes et Requêtes
 : Les fonctions devraient soit effectuer une action, soit

retourner des informations, mais pas les deux, afin d’éviter

toute ambiguïté.

Stratégies de Gestion des Erreurs

Utiliser des exceptions au lieu de codes d'erreur peut mener à

un flux de contrôle plus propre dans les fonctions. La gestion

des exceptions devrait être séparée de la logique métier pour

maintenir la clarté.

Conclusion

La programmation concerne fondamentalement la création

d'un langage pour représenter un système. Les fonctions,

comme des verbes dans un langage, devraient être concises,

ciblées et bien structurées pour communiquer efficacement.

Suivre les principes énoncés conduira à un code plus propre

et plus maintenable.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Exemple

Point clé:Comprendre l'Importance de la Clarté des

Fonctions

Exemple:Imaginez que vous examinez du code et que

vous tombez sur une fonction de plus de 50 lignes, avec

une logique qui se chevauche et des noms déroutants.

Alors que vous essayez de percer son but, la frustration

monte. Maintenant, imaginez plutôt ouvrir un fichier et

trouver une fonction compacte, pas plus de 20 lignes,

nommée 'calculerPaiementMensuel'. Instantanément,

vous reconnaissez la tâche qu'elle effectue. Vous

parcourez sans effort des lignes claires et organisées qui

séparent logiquement les étapes en morceaux gérables -

pas de complexité superflue, juste un calcul simple.

Cette clarté non seulement vous fait gagner du temps,

mais réduit considérablement le risque de bugs lors des

modifications futures, vous permettant de vous

concentrer sur l'amélioration de la fonctionnalité plutôt

que de démêler un enchevêtrement de codes.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Pensée critique

Point clé:L'accent mis sur la taille des fonctions peut

ne pas s'appliquer universellement.

Interprétation critique:Bien que l'auteur prône des

fonctions plus petites pour améliorer la lisibilité et la

maintenabilité, ce point de vue peut ne pas tenir compte

des contextes spécifiques où des fonctions plus grandes

et plus complexes peuvent encore être utilisées

efficacement. Dans certaines paradigmes de

programmation, comme la programmation

fonctionnelle, le besoin de fonctions composites plus

grandes peut surgir naturellement en raison de la nature

de la tâche à résoudre (Knuth, D. E. (1997). 'L'Art de la

programmation'.) Ainsi, les lecteurs devraient évaluer de

manière critique l'approche universelle concernant la

taille des fonctions.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 3 Résumé : 4 Commentaires
Section Points Clés

La Nature des Commentaires

 Les commentaires peuvent être utiles mais peuvent encombrer le code.
 De bons commentaires indiquent un échec à exprimer l'intention à travers le code.
 Les commentaires peuvent devenir obsolètes au fur et à mesure que le code évolue.
 Le meilleur code devrait être auto-explicatif.

Pratiques Efficaces pour les
Commentaires

 CODER PROPREMENT au lieu d'ajouter des commentaires pour un code
médiocre.
 Un code efficace peut réduire le besoin de commentaires.
 Les commentaires bénéfiques incluent :

 Commentaires Légaux : Nécessaires pour le droit d'auteur.
 Commentaires Informatifs : Expliquent les valeurs de retour et le but.
 Explication de l'Intention : Raisons des décisions de codage.
 Clarifications : Contexte pour les arguments complexes.
 Avertissements : Alerte concernant les conséquences ou l'utilisation.

Les Dangers des
Commentaires

 De mauvais commentaires peuvent induire en erreur et créer de la confusion.
 Commentaires Redondants : Répétition inutile du code.
 Marmonnements et Bruit : Déclarations vagues et évidentes.
 Code Commenté : Évitez le code inactif commenté ; utilisez le contrôle de version.
 Commentaires Obligatoires : Des commentaires forcés mènent à une
documentation encombrée.

Meilleures Pratiques pour
Écrire des Commentaires

 Évitez les commentaires lorsque des noms peuvent expliquer le code.
 Les commentaires devraient décrire le code à proximité, pas des informations non
locales.
 Réduisez l'information dans les commentaires pour ne pas submerger les lecteurs.
 Insistez sur la clarté et la concision ; révisez pour l'exactitude.

Conclusion
 Visez un code clair pour minimiser les commentaires nécessaires, en utilisant les
commentaires avec parcimonie et efficacité lorsque c'est nécessaire.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 3 : Commentaires

La Nature des Commentaires

- Les commentaires peuvent être utiles mais encombrent

souvent le code.

- De bons commentaires sont un signe d'échec à exprimer

une intention à travers le code.

- Avec le temps, les commentaires peuvent devenir obsolètes

ou trompeurs à mesure que le code évolue.

- Le meilleur code devrait être explicite, minimisant ainsi le

besoin de commentaires.

Pratiques Efficaces de Commentaires

- Les commentaires ne doivent pas remplacer un code

médiocre ; nettoyez le code au lieu d'ajouter des

commentaires pour l'expliquer.

- Un code efficace peut souvent remplacer le besoin de

commentaires en exprimant clairement l'intention.

- Certains commentaires sont bénéfiques, notamment :

 -

Installer l'application Bookey pour débloquer le
texte complet et l'audio

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 4 Résumé : 5 Mise en forme
Section Résumé

Importance du
formatage du code

Améliore la communication et la lisibilité, reflétant le professionnalisme et l'attention aux détails.

Formatage vertical Les fichiers doivent être petits (<200 lignes) pour une meilleure compréhension ; ils doivent
commencer par des concepts de haut niveau.

Ouverture verticale Utilisez des lignes vides pour séparer les concepts afin d'améliorer la lisibilité et la clarté dans les
sections logiques.

Densité verticale Gardez le code lié dense sans trop de sauts de ligne ou de commentaires qui obscurcissent la clarté.

Distance verticale Placez les variables et fonctions liées proches les unes des autres pour réduire la confusion ;
déclarez les variables au début des classes.

Ordre vertical Les appels de fonction doivent suivre un ordre logique pour aider les lecteurs à comprendre la
structure du programme.

Formatage horizontal Ayez des lignes de moins de 120 caractères et utilisez efficacement les espaces sans alignements
inutiles.

Ouverture et densité
horizontales

Utilisez des espaces pour clarifier les relations et maintenir des distinctions claires entre les
différents éléments.

Indentation Indentez le code pour représenter sa structure hiérarchique afin de faciliter la navigation dans les
portées.

Règles de l'équipe Une cohérence entre les membres de l'équipe est essentielle ; chacun doit suivre un ensemble de
règles de formatage partagé.

Règles de formatage
d'Oncle Bob

Mise en avant de la clarté et de l'uniformité ; favorise la création d'un code fonctionnel, élégant et
compréhensible.

Chapitre 5 : Mise en forme

Importance de la mise en forme du code

La mise en forme est cruciale en programmation car elle

améliore la communication et garantit que le code est lisible.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Une base de code bien formatée reflète le professionnalisme

et l'attention aux détails, ce qui peut influencer la perception

de l'ensemble du projet.

Mise en forme verticale

Les fichiers devraient généralement être de petite taille,

idéalement moins de 200 lignes, pour faciliter la

compréhension. À l'image des articles de journaux, les

fichiers sources devraient offrir une structure claire,

commençant par des concepts généraux et détaillant

progressivement les spécificités.

Ouverture verticale

Utilisez des lignes vides pour séparer des concepts distincts,

ce qui aide à la lisibilité. Cela favorise une plus grande clarté

dans la mise en page visuelle, permettant aux lecteurs de

distinguer facilement les différentes sections logiques du

code.

Densité verticale

Le code connexe devrait être dense verticalement,

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

minimisant les sauts de ligne inutiles pour faciliter la

compréhension. Évitez les commentaires excessifs qui

peuvent nuire à la clarté.

Distance verticale

Les variables et les fonctions connexes devraient être proches

les unes des autres pour éliminer la confusion lors de la

navigation dans le code. Les variables d'instance devraient

généralement être déclarées au début des classes, tandis que

les fonctions étroitement liées devraient suivre le flux naturel

des opérations.

Ordre vertical

Les appels de fonction devraient se dérouler logiquement

vers le bas, maintenant un ordre qui permet aux lecteurs de

saisir facilement la structure du programme.

Mise en forme horizontale

Visez des longueurs de ligne plus courtes, idéalement ne

dépassant pas 120 caractères. Utilisez des espaces pour relier

des éléments étroitement associés, tout en évitant les

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

alignements inutiles qui peuvent détourner l'attention de

l'objectif du code.

Ouverture et densité horizontales

L'espace horizontal sert à clarifier les relations entre les

éléments, améliorant la lisibilité. Équilibrez l'espace pour

signifier de fortes associations tout en maintenant une

distinction claire lorsque cela est nécessaire.

Indentation

L'indentation représente visuellement la structure

hiérarchique du code, rendant plus facile la navigation à

travers différents niveaux de portée. Indentez les instructions

pour refléter cette structure, maintenant le code propre et

compréhensible.

Règles d'équipe

La cohérence au sein d'une équipe de développement est

essentielle ; tous les membres devraient respecter un

ensemble commun de règles de mise en forme pour maintenir

un style cohérent tout au long de la base de code.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Règles de mise en forme d'Oncle Bob

L'auteur, "Oncle Bob," maintient des règles de mise en forme

personnelles qui privilégient la clarté et l'uniformité,

incarnées dans ses exemples. En respectant ces principes, les

programmeurs peuvent créer un code qui est non seulement

fonctionnel, mais aussi élégant et facile à comprendre.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 5 Résumé : 6 Objets et
Structures de Données

Section Points Clés

Abstraction des
Données

 Conservez les variables privées pour plus de flexibilité.
 Les accesseurs et mutateurs peuvent compromettre l'abstraction des données.
 Utilisez des interfaces pour les opérations sans exposer la structure.

Anti-Symétrie
Données/Objets

 Les objets encapsulent les données avec des méthodes ; les structures de données exposent les
données.
 Conséquences significatives pour la conception du système.
 Le code procédural facilite l'ajout de fonctions ; le code orienté objet facilite l'ajout de types de
données.

Loi de Demeter

 Un module ne devrait pas connaître la structure interne des objets manipulés.
 Les méthodes devraient communiquer uniquement avec leur classe ou les objets qu'elles
possèdent.
 Les violations peuvent conduire à un code complexe et fortement couplé ("casse de train").

Hybrides

 Évitez les structures hybrides combinant les caractéristiques objets et structures de données.
 Les objets doivent encapsuler le comportement, évitant l'exposition inutile des données.

Objets de Transfert de
Données

 Les OTD sont des structures simples avec des variables publiques, utilisées pour la
communication de données.
 Les beans ont des variables privées accessibles via des accesseurs/mutateurs, offrant peu
d'avantages.
 Les Enregistrements Actifs servent d'OTD avec des méthodes de manipulation de données,
provoquant des hybrides de conception.

Conclusion

 Les objets permettent une addition facile de types de données, mais compliquent l'ajout de
comportements.
 Les structures de données facilitent l'ajout de comportements, compliquant l'intégration de
types de données.

https://share.bookey.app/KNYZ6NPRcEb

Section Points Clés

 Les développeurs doivent évaluer les exigences du système pour faire des choix de conception.

Objets et Structures de Données

Abstraction des Données

- Les variables devraient rester privées pour maintenir la

flexibilité des changements.

- Les accesseurs et les mutateurs peuvent exposer des

variables privées, compromettant l'abstraction des données.

- Mettre en œuvre l'abstraction des données implique

d'utiliser des interfaces qui permettent des opérations sans

révéler la structure sous-jacente.

Anti-Symétrie Données/Objets

- Les objets encapsulent des données avec des méthodes,

tandis que les structures de données exposent des données

sans comportement.

- Cette distinction a des implications significatives pour la

conception des systèmes.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

- Le code procédural simplifie l'ajout de fonctions sans

changer les structures de données, tandis que le code orienté

objet (OO) simplifie l'ajout de types de données sans

modifier les comportements existants.

Principe de Demeter

- Un module ne devrait pas être au courant de la structure

interne des objets qu'il manipule.

- Le principe suggère que les méthodes ne devraient

communiquer qu'avec leur propre classe ou les objets qu'elles

créent ou détiennent directement.

- Les violations conduisent souvent à un code complexe et

fortement couplé, qualifié de "casse-train."

Hybrides

- Les structures hybrides qui combinent des caractéristiques

des objets et des structures de données compliquent la

conception et devraient être évitées.

- Les objets devraient encapsuler le comportement et ne pas

exposer leurs données inutilement.

Objets de Transfert de Données

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

- Les DTO sont des structures simples avec des variables

publiques et aucune fonctionnalité, souvent utilisées pour la

communication de données.

- Les beans ont des variables privées accessibles via des

accesseurs et des mutateurs, mais ils peuvent apporter peu

d'avantages supplémentaires.

- Les enregistrements actifs fonctionnent comme des DTO

mais avec des méthodes pour la manipulation des données,

conduisant souvent à une hybridation de la conception.

Conclusion

- Les objets offrent la flexibilité d'ajouter de nouveaux types

de données mais rendent plus difficile l'ajout de

comportements, tandis que les structures de données

facilitent l'ajout de comportements mais compliquent les

intégrations de types de données.

- Les développeurs compétents évaluent les exigences

spécifiques d'un système, choisissant la conception et

l'approche appropriées en conséquence.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 6 Résumé : Gestion des erreurs
Section Résumé

Introduction La gestion des erreurs est fondamentale, mais lorsqu'elle est abusée, elle peut
obscurcir la logique principale du code.

Utiliser des exceptions plutôt que des
codes de retour

Les exceptions séparent clairement la gestion des erreurs de la logique principale,
améliorant ainsi la lisibilité.

Rédigez d'abord votre structure
try-catch-finally

Commencer par des structures try-catch-finally clarifie les exceptions attendues et
maintient la logique cohérente.

Utiliser des exceptions non vérifiées Les exceptions non vérifiées offrent de la flexibilité et évitent d’encombrer les
signatures de méthode par rapport aux exceptions vérifiées.

Fournir un contexte avec les
exceptions

Les exceptions doivent inclure des informations détaillées sur les erreurs pour aider
au débogage et à la journalisation.

Définir les classes d'exception en
fonction des besoins de l'appelant

Concentrez-vous sur la façon dont les appelants géreront les exceptions ; la
normalisation des exceptions améliore la qualité du code.

Définir le flux normal Encapsuler les comportements de cas spéciaux réduit l'encombrement dans la
logique principale, conduisant à un code plus propre.

Ne pas retourner null Retourner null peut entraîner des vérifications fréquentes et des erreurs d'exécution ;
utilisez plutôt des exceptions ou des objets de cas spéciaux.

Ne pas passer null Évitez de passer null aux méthodes pour prévenir les NullPointerExceptions ;
imposez des arguments non nuls.

Conclusion Un code lisible et robuste considère la gestion des erreurs comme une préoccupation
distincte pour améliorer la maintenabilité.

Résumé du Chapitre 6 : Gestion des erreurs

Introduction

La gestion des erreurs est cruciale en programmation car elle

garantit que le code se comporte correctement lorsque des

situations inattendues surviennent. Cependant, lorsque la

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

gestion des erreurs devient trop envahissante dans la base de

code, elle peut obscurcir la logique principale, rendant le

code difficile à lire et à maintenir.

Utilisez des exceptions plutôt que des codes de
retour

- Historiquement, de nombreux langages de programmation

utilisaient des codes d'erreur et des indicateurs qui

encombraient le code d'appel.

- Lancer des exceptions est une approche plus propre ; cela

permet à la logique principale de rester dégagée des

vérifications d'erreur, améliorant ainsi la lisibilité du code.

Écrivez d'abord votre instruction try-catch-finally

- Commencer par une structure try-catch-finally clarifie

quelles exceptions sont attendues et comment elles seront

gérées.

- Cette pratique aide à maintenir un état cohérent et garde la

logique claire.

Utilisez des exceptions non vérifiées

Installer l'application Bookey pour débloquer le
texte complet et l'audio

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 7 Résumé : 8 Limites
Section Résumé

Introduction
aux Limites

Ce chapitre souligne l'importance de maintenir des limites claires lors de l'intégration de composants tiers
dans le développement logiciel.

Utilisation de
Code Tiers

Il existe une tension entre l'applicabilité générale des interfaces et les besoins spécifiques des utilisateurs.
Pour améliorer la clarté et la maintenabilité, il est conseillé de ne pas exposer directement des interfaces
comme java.util.Map, mais de les encapsuler au sein de classes personnalisées.

Explorer et
Apprendre les
Limites

Intégrer du code tiers nécessite de réaliser des tests pour mieux comprendre le comportement des
bibliothèques. Des tests courts facilitent une intégration efficace plutôt qu'une expérimentation directe en
production.

Utilisation de
Code Qui
N'Existe Pas
Encore

Créer des interfaces auto-défines permet aux équipes de travailler indépendamment de composants
incomplets, aboutissant à un code plus propre et plus ciblé.

Limites
Propres

Gérer efficacement les limites soutient les changements futurs avec un minimum de rework. La séparation
des préoccupations et l'utilisation de modèles de conception comme l'Adaptateur aident à maintenir de
faibles charges de maintenance.

Conclusion Des limites claires sont essentielles pour la flexibilité et pour minimiser l'impact des changements tiers. Des
stratégies de conception et de test appropriées peuvent atténuer les complexités liées aux dépendances
externes.

Chapitre 8 : Limites

Introduction aux Limites

Dans le développement logiciel, il est courant d'intégrer des

paquets tiers ou de s'appuyer sur des composants créés par

d'autres équipes. Ce chapitre aborde l'importance de

maintenir des limites claires entre différents composants

logiciels.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Utilisation de Code Tiers

Une tension fondamentale existe entre les fournisseurs

d'interfaces, qui visent une large applicabilité, et les

utilisateurs, qui nécessitent de la spécificité. Par exemple,

l'interface java.util.Map est polyvalente mais peut mener à

des abus à cause de méthodes comme clear() et put(). Pour

atténuer cela, il est préférable de ne pas exposer Map

directement ; à la place, encapsulez-le dans une classe dédiée

(par exemple, Capteurs) pour limiter la fonctionnalité

disponible et améliorer la clarté et la maintenabilité du code.

Explorer et Apprendre les Limites

Intégrer du code tiers peut être difficile. Écrire des tests pour

explorer la fonctionnalité de ces bibliothèques, appelés tests

d'apprentissage, peut faciliter la compréhension et

l'intégration. Par exemple, lors de l'utilisation de la

bibliothèque log4j, créer de petits tests pour vérifier les

comportements peut permettre de surmonter les défis

d'intégration plus efficacement que d'expérimenter

directement en production.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Utiliser du Code Qui N'Existe Pas Encore

Lors du développement contre des interfaces indéfinies ou

inconnues, créer une interface auto-définie peut maintenir la

clarté. Cette approche permet aux équipes de travailler

indépendamment de composants incomplets, menant

finalement à un code plus propre et plus ciblé.

Limites Propres

Gérer correctement les limites peut accueillir des

changements futurs avec un minimum de retouche. Cela

implique de maintenir une séparation claire des

préoccupations, limitant les points dans le code où les

bibliothèques tierces sont référencées. L'utilisation de

modèles comme le Adaptateur peut aider à faire le lien entre

les interfaces personnalisées et les API tierces et à garder la

charge de maintenance basse, assurant que le système reste

adaptable aux changements.

Conclusion

Maintenir des limites nettes dans les systèmes logiciels est

crucial pour favoriser la flexibilité et minimiser l'impact des

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

changements tiers. Des stratégies de conception et de test

appropriées peuvent protéger contre les complexités

introduites par les dépendances externes.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Pensée critique

Point clé:La nécessité de frontières claires entre les

composants logiciels est un principe fondamental du

CODER PROPREMENT.

Interprétation critique:Alors que Martin insiste sur

l'importance de maintenir des frontières nettes pour

améliorer la clarté et la facilité de maintenance, il est

crucial de considérer que cette perspective peut négliger

des scénarios où une intégration plus étroite et des

limites moins rigides pourraient favoriser l'innovation et

l'efficacité. Par exemple, bien que l'encapsulation des

bibliothèques tierces puisse protéger contre une

utilisation abusive, cela pourrait également limiter la

flexibilité d'utiliser ces bibliothèques de manière

novatrice. Les débats sur la conception des interfaces ne

sont pas nouveaux ; des approches telles que celles

défendues par Eric Evans dans 'Domain-Driven Design'

suggèrent que parfois, une intégration plus profonde,

plutôt qu'une séparation stricte, peut mieux servir des

modèles de domaine complexes. Les lecteurs devraient

évaluer de manière critique si le respect strict des

frontières claires, tel que présenté par Martin, est

universellement applicable ou si des stratégies

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

alternatives pourraient s'avérer bénéfiques dans certains

contextes.

Scanner pour télécharger

Chapitre 8 Résumé : 9 Tests Unitaires
Section Points Clés

Introduction aux
Tests Unitaires

L'évolution des pratiques de programmation, un changement notable vers des méthodes structurées
comme le TDD qui insiste sur l'écriture de tests avant le code.

Les Trois Lois du
TDD 1. Écrire un test unitaire qui échoue avant le code de production.

 2. Écrire juste assez d'un test pour qu'il échoue.
 3. Écrire juste assez de code de production pour que le test échoué passe.

Maintenir des Tests
Propres

Des tests propres sont essentiels au processus de test ; des tests sales entraînent des problèmes de
maintenance et réduisent la confiance dans la suite de tests.

L'Importance des
Tests Propres

Les tests devraient avoir des normes élevées similaires à celles du code de production, favorisant la
flexibilité et réduisant la peur des changements.

Caractéristiques
des Tests Propres Lisibilité: Les tests doivent clairement exprimer leur intention.

 Langage de Test Spécifique au Domaine: Améliore l'expressivité.
 Une Assertion par Test: Se concentrer sur un concept pour la lisibilité.

Principes F.I.R.S.T.
pour des Tests
Propres

 Rapide: Une exécution rapide encourage des tests fréquents.
 Indépendant: Les tests doivent s'exécuter indépendamment.
 Répétable: Résultats cohérents à travers les environnements.
 Auto-Vérifiable: Résultats clairs de réussite/échec.
 Opportune: Créé juste avant le code correspondant.

Conclusion Des tests unitaires propres sont essentiels pour la santé du projet, favorisant la maintenabilité et la
flexibilité, garantissant la qualité du code et permettant des changements. Un refactoring régulier des
tests est crucial.

Tests Unitaires

Introduction aux Tests Unitaires

- L'évolution des pratiques de programmation et de tests

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

unitaires au cours de la dernière décennie, passant de tests ad

hoc à des méthodologies structurées comme le

développement piloté par les tests (TDD), est significative.

- Le TDD met l'accent sur l'écriture de tests unitaires avant de

coder, ce qui améliore le processus de test.

Les Trois Lois du TDD

1. Écrire un test unitaire qui échoue avant d'écrire du code de

production.

2. Écrire seulement autant de code de test qu'il est nécessaire

pour échouer.

3. Écrire seulement autant de code de production qu'il est

nécessaire pour faire passer le test échouant actuel.

Maintenir des Tests Propres

- Des tests propres sont essentiels pour maintenir l'efficacité

des tests unitaires face à l'évolution du code de production.

- Des tests sales créent des charges de maintenance et

peuvent conduire à un manque de confiance dans la suite de

tests.

L'Importance des Tests Propres

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

- Les tests doivent être maintenus avec les mêmes standards

que le code de production.

- Des tests propres favorisent la flexibilité et réduisent la peur

de faire des modifications dans le code de production.

Caractéristiques des Tests Propres

-

Lisibilité
: La clarté et la simplicité des tests sont primordiales ; ils

doivent exprimer l'intention sans être alourdis par des détails.

-

Langage de Test Spécifique au Domaine
: Créer une API de test peut améliorer l'expressivité et la

clarté des tests.

-

Une Seule Assertion par Test
: Viser à minimiser le nombre d'assertions par test, en

mettant l'accent sur le test d'un seul concept pour améliorer la

lisibilité.

Principes F.I.R.S.T. pour des Tests Propres

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

-

Rapides
: Les tests doivent s'exécuter rapidement pour encourager une

exécution fréquente.

-

Indépendants
: Les tests doivent s'exécuter indépendamment et ne pas

dépendre les uns des autres.

-

Répétables
: Les tests doivent donner des résultats cohérents à travers

différents environnements.

-

S'auto-Valident
: Les tests doivent fournir des résultats d'acceptation/rejet

clairs sans interprétation subjective.

-

Opportuns
: Les tests doivent être créés juste avant le code de

production correspondant.

Conclusion

- Des tests unitaires propres sont cruciaux pour la santé d'un

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

projet, favorisant la maintenabilité et la flexibilité. Ils aident

non seulement à garantir la qualité du code, mais facilitent

également les modifications et les améliorations du code. Il

est essentiel de refactoriser régulièrement les tests et de

maintenir leur propreté pour assurer le succès continu du

projet.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Pensée critique

Point clé:L'Importance des Tests Propres

Interprétation critique:Bien que l'auteur plaide en faveur

d'une adhésion stricte aux principes de tests propres, il

est important de reconnaître que toutes les équipes n'ont

pas les mêmes ressources ou priorités. Les tests propres,

tels que décrits par Martin, favorisent effectivement la

maintenabilité et la flexibilité, mais la mise en œuvre de

pratiques aussi rigoureuses peut être impraticable dans

tous les contextes. Les critiques pourraient soutenir que

l'accent mis sur la propreté des tests pourrait entraîner

une surcharge inutile pour les projets plus petits ou les

équipes manquant d'expertise en tests. Par exemple,

dans certains environnements agiles, la rapidité et les

itérations rapides peuvent primer sur la propreté

exhaustive des tests, mettant en évidence une divergence

potentielle de philosophie. Des sources telles que 'The

Pragmatic Programmer' d'Andrew Hunt et David

Thomas présentent des points de vue alternatifs sur

l'équilibre entre les tests et d'autres priorités de

développement, suggérant que bien que les tests propres

soient idéaux, le pragmatisme devrait guider la pratique.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 9 Résumé : 10 Classes
Section Résumé

Organisation des
Classes

Les classes doivent être organisées en commençant par les constantes statiques publiques, suivies des
variables statiques privées, des variables d'instance privées, et des fonctions publiques. Les fonctions
utilitaires doivent être privées et placées après les fonctions publiques pour une meilleure lisibilité.

Encapsulation Bien que les variables privées et les fonctions utilitaires soient privilégiées, un certain accès peut être
nécessaire pour les tests, mais la confidentialité doit rester une priorité.

Les Classes
Doivent Être Petites
!

En respectant le Principe de Responsabilité Unique (SRP), les classes doivent être petites et se
concentrer sur une seule responsabilité. Les noms de classes doivent refléter leurs responsabilités pour
guider leur taille et leur objectif.

Cohésion Les classes doivent avoir un nombre limité de variables d'instance partagées entre les méthodes pour
atteindre une haute cohésion, ce qui les rend plus faciles à comprendre et à maintenir.

Maintenir la
Cohésion Résulte
en Beaucoup de
Petites Classes

Décomposer les fonctions en parties plus petites peut révéler la nécessité de nouvelles classes, et les
classes ne doivent pas accumuler de variables d'instance inutiles simplement pour être partagées entre
les méthodes.

Organiser pour le
Changement

Les classes doivent être conçues pour minimiser les ruptures lors des changements. L'utilisation de
sous-classes permet une extension sans modifier le code existant, en respectant le Principe
Ouvert-Fermé (OCP).

Isoler du
Changement

Les interfaces et les classes abstraites doivent être utilisées pour réduire les dépendances directes et
faciliter les tests. Par exemple, une interface `StockExchange` peut permettre des tests cohérents malgré
la volatilité des données réelles.

Bibliographie Les références incluent des textes clés sur les principes de conception orientée objet par des auteurs
comme Robert C. Martin et Donald E. Knuth, qui mettent en avant les rôles, responsabilités et pratiques
agiles.

Chapitre 10 : Classes

Organisation des Classes

Dans le CODER PROPREMENT, une attention particulière

doit être portée aux niveaux supérieurs d'organisation du

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

code, notamment aux classes. Une classe doit commencer par

des constantes publiques statiques, des variables privées

statiques, puis des variables d'instance privées, suivies des

fonctions publiques. Garder les fonctions utilitaires privées et

les organiser après les fonctions publiques améliore la

lisibilité.

Encapsulation

Bien que les variables privées et les fonctions utilitaires

soient préférées, il arrive parfois que l'accessibilité doive être

assouplie pour les tests. Néanmoins, le maintien de la

confidentialité doit toujours être une priorité.

Les Classes Doivent Être Petites !

Les classes doivent être petites, respectant le principe d'avoir

une seule responsabilité ou raison de changement, connu

sous le nom de Principe de Responsabilité Unique (SRP).

Une classe avec plusieurs responsabilités est souvent trop

grande et doit être refactorisée. Le nom de la classe doit

refléter ses responsabilités, guidant ainsi les développeurs sur

sa taille et son objectif.

Installer l'application Bookey pour débloquer le
texte complet et l'audio

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 10 Résumé : 11 Systèmes

Chapitre 11 : Systèmes

Introduction à la complexité et à la gestion des
systèmes

- La complexité nuit au développement logiciel, rendant la

planification, la construction et les tests des produits

difficiles.

- Comme les villes, les systèmes logiciels nécessitent une

organisation d'équipe efficace et une modularité, permettant

aux composants individuels de fonctionner sans nécessiter

une compréhension exhaustive.

Séparation des préoccupations

- Met l'accent sur l'importance de séparer les processus de

construction de l'utilisation de l'application.

- De nombreuses applications mélangent les processus de

démarrage avec la logique d'exécution, ce qui peut entraîner

des complications lors des tests et de la gestion des

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

dépendances.

Construction efficace du système

- Le processus de démarrage doit être modulé séparément de

la logique d'opération normale pour améliorer la clarté et la

maintenabilité.

- Deux méthodes pour réaliser cette séparation sont :

 - Déplacer toute la logique de construction dans la fonction

principale.

 - Utiliser des usines pour gérer la création d'objets sans

influencer la couche de l'application.

Injection de dépendances (DI)

- La technique DI améliore la séparation des préoccupations

en transférant les responsabilités de gestion des dépendances

du code de l'application à des conteneurs ou frameworks

externes.

- La DI permet une initialisation paresseuse, garantissant que

les dépendances ne sont créées que lorsque c'est nécessaire.

Développement itératif des systèmes

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

- Les systèmes évoluent de manière incrémentielle,

commençant par une architecture simple et s'élargissant à

mesure que les besoins croissent, ce qui favorise l'agilité et la

réactivité au changement.

- Les leçons majeures tirées soulignent que la planification

préalable conduit souvent à des systèmes trop sophistiqués

qui entravent l'adaptabilité.

Préoccupations transversales

- Aborde les défis communs avec des architectures comme

EJB2 qui ne séparent pas correctement les préoccupations.

- Introduit la programmation orientée aspect (AOP) comme

une méthodologie pour gérer les préoccupations transversales

par des déclarations claires plutôt que par une logique codée

en dur.

Proxys Java et AOP

- Les proxys Java facilitent des opérations transversales

simples, bien qu'ils introduisent de la complexité.

- Les frameworks AOP comme Spring et AspectJ fournissent

des outils pour mieux gérer les préoccupations transversales

tout en maintenant des pratiques de CODER

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

PROPREMENT.

Tests et prise de décision

- Une architecture système modulaire favorise le

développement dirigé par les tests et implique de minimiser

les pratiques de conception invasives pour maintenir la clarté

du code et faciliter les tests.

Normes et langages spécifiques au domaine (DSL)

- Encourage l'utilisation de normes lorsqu'elles apportent une

réelle valeur et suggère d'utiliser des DSL pour combler le

fossé entre la logique de domaine et l'implémentation du

code.

Conclusion

- Une architecture système propre est cruciale pour maintenir

la clarté du domaine et permettre des réponses agiles aux

changements.

- Les développeurs doivent prioriser la simplicité et la

modularité à tous les niveaux pour garantir la qualité et la

maintenabilité dans la conception des systèmes.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Exemple

Point clé:Séparation des préocupations

Exemple:Imaginez que vous développez une application

web. Au lieu de regrouper la configuration de votre

connexion à la base de données, l'authentification des

utilisateurs et la logique de rendu dans un seul bloc de

code, vous décidez de créer des modules distincts : un

pour établir les connexions à la base de données, un

autre pour gérer l'authentification des utilisateurs, et un

troisième pour le rendu des pages web. Cette approche

simplifie la maintenance, car vous pouvez travailler sur

la logique de la base de données sans vous soucier de

qui est connecté ou de l'apparence de la page, et cela

vous permet de tester chaque module indépendamment,

menant ainsi à un logiciel globalement plus fiable et

adaptable.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Pensée critique

Point clé:Séparation des Préoccupations

Interprétation critique:La notion de séparer les processus

de construction de la logique d'application est présentée

comme essentielle à CODER PROPREMENT.

Cependant, il est important de se demander si ce

paradigme est toujours valable, certains soutenant

qu'une approche plus intégrée peut favoriser une

meilleure compréhension des interactions complexes

dans les logiciels. Une critique de Simon Brown dans

'Architecture Logicielle pour Développeurs' postule que,

bien que la séparation puisse aider à la clarté, elle peut

également entraîner une fragmentation, rendant plus

difficile pour les développeurs de saisir le

comportement global du système. Cette perspective

encourage les lecteurs à considérer les inconvénients

potentiels d'une séparation stricte et à évaluer les

besoins spécifiques au contexte dans la conception des

systèmes.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 11 Résumé : 12 Émergence

Émergence par Jeff Langr

Devenir Propre grâce à un Design Émergent

Dans la conception logicielle, respecter quatre règles simples

peut améliorer de manière significative la structure et le

design de votre code. Ces règles facilitent l'émergence d'un

bon design, comme l'ont souligné les principes de Kent Beck

sur le Design Simple :

1. Passe tous les tests

2. Ne contient aucune duplication

3. Exprime l'intention du programmeur

4. Minimise le nombre de classes et de méthodes

Règle de Design Simple 1 : Passe Tous les Tests

Un design doit garantir que le système se comporte comme

prévu. La testabilité est cruciale ; les systèmes qui ne peuvent

pas être testés ne doivent pas être déployés. Écrire des tests

conduit à des classes plus petites, à usage unique, qui

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

respectent le Principe de Responsabilité Unique (SRP) et

minimise le couplage grâce à des techniques comme

l'Injection de Dépendance (DIP). L'acte de tester en continu

améliore l'adhésion aux principes de la programmation

orientée objet, favorisant un couplage plus faible et une

cohésion plus élevée.

Règles de Design Simple 2-4 : Refactorisation

Une fois qu'un système est entièrement testé, une

refactorisation incrémentale peut se produire. Chaque ajout

de code nécessite une réflexion sur la dégradation du design,

et si c'est le cas, des modifications doivent être effectuées

tout en s'assurant que les tests passent toujours. Cette étape

implique l'élimination de la duplication, l'assurance de

l'expressivité et la réduction du nombre de classes et de

méthodes.

Pas de Duplication

La duplication complique le design, créant des risques

supplémentaires et une complexité inutile. Éliminer la

duplication — qu'elle soit directe ou dans des

implémentations fonctionnelles — est essentiel. Refactoriser

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

des méthodes similaires en une méthode partagée améliore la

clarté et réduit les violations du SRP. Par exemple, en

considérant un design pour les politiques de vacances, nous

pouvons utiliser le motif Méthode Template pour éliminer la

duplication de code à travers différents types.

Expressif

La clarté dans le code est primordiale pour la maintenabilité.

Le code doit clairement exprimer son intention pour

minimiser les erreurs lors des modifications futures.

Atteindre l'expressivité implique de choisir des noms

descriptifs, de garder les classes et les fonctions concises et

d'utiliser une nomenclature standard. Des tests unitaires bien

élaborés servent également de double fonction en tant que

documentation par l'exemple, aidant les futurs développeurs

à comprendre le code.

Classes et Méthodes Minimales

Bien que minimiser la duplication et améliorer l'expressivité

soient cruciaux, la création d'un nombre excessif de petites

classes peut entraîner de la confusion. Il est essentiel de

trouver un équilibre et d'éviter une complexité inutile.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

L'objectif est de maintenir un système global de taille

manageable avec des fonctions et des classes petites.

Conclusion

Bien qu'aucune pratique simple ne puisse remplacer

l'expérience, les méthodes décrites favorisent l'adhésion aux

principes de design établis. Adopter des pratiques de design

simples peut orienter les développeurs vers les meilleures

pratiques qui nécessitent généralement un apprentissage

approfondi au fil du temps.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Exemple

Point clé:Le développement piloté par les tests (TDD)

améliore la qualité du code.

Exemple:Imaginez que vous construisez une nouvelle

fonctionnalité pour une application. Avant même

d'écrire la fonctionnalité, vous commencez par rédiger

un test qui définit ce que la fonctionnalité est censée

faire. Lorsque vous exécutez le test, il échoue parce que

la fonctionnalité n'existe pas encore. Cela vous guide à

construire juste assez de code pour le faire passer.

Chaque fois que vous améliorez la fonctionnalité, vous

écrivez de nouveaux tests ou modifiez ceux qui existent,

en vous assurant que tout fonctionne toujours

correctement. En vous en tenant à cette méthode, votre

base de code reste propre et adaptable, reflétant votre

intention tout en rendant clair ce que chaque partie de

votre code est censée accomplir.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Pensée critique

Point clé:L'Importance du Développement Dirigé

par les Tests

Interprétation critique:Langr souligne qu'un design bien

testé est non-négociable pour la fiabilité. Cependant, il

est essentiel de remettre en question l'efficacité absolue

de cette approche, car la dépendance aux tests pourrait

amener les développeurs à devenir trop dépendants des

outils au lieu de favoriser une compréhension

approfondie. Les critiques peuvent plaider en faveur des

tests exploratoires et des méthodes agiles, qui prennent

en compte les exigences dynamiques et les scénarios du

monde réel (voir (Beck, K. "Développement Dirigé par

les Tests : Par l'Exemple") pour des perspectives

contraires). Les développeurs devraient peser

l'importance d'un test rigoureux et les rendements

potentiellement décroissants d'une adhésion stricte aux

principes dirigés par les tests.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 12 Résumé : 13 Concurrence

Chapitre 13 : Concurrence

Aperçu

Écrire des programmes concurrents propres représente un

défi majeur par rapport aux applications à un seul fil. Ce

chapitre explore la nécessité de la concurrence, les difficultés

qu'elle engendre et fournit des directives pour écrire du code

concurrent propre. Il aborde également les complications

liées au test des applications concurrentes, soulignant la

complexité du sujet.

Pourquoi la Concurrence ?

La concurrence agit comme une stratégie de découplage,

permettant de séparer le "quoi" de l'exécution du "quand".

Cela améliore le débit et la structure de l'application, la

rendant plus compréhensible et meilleure pour séparer les

préoccupations. Par exemple, les applications web utilisent

des servlets asynchrones pour gérer les demandes, facilitant

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

ainsi le processus de gestion de plusieurs demandes

entrantes.

Cependant, la mise en œuvre réelle de la concurrence est

semée d'embûches. La performance peut être trompeuse, les

exigences de conception changent de manière significative, et

même la concurrence gérée par les conteneurs nécessite une

attention particulière pour éviter des problèmes tels que le

blocage et les mises à jour concurrentes.

Mythes et Idées Reçues

1.

La concurrence améliore la performance
 - Pas toujours ; les gains de performance dépendent du

temps d'attente partagé entre les fils, ce qui peut être difficile

à gérer.

2.

La conception concurrente ne change pas
 - Les exigences de concurrence nécessitent souvent des

changements dramatiques dans la conception du système.

3.

Comprendre la concurrence n'est pas nécessaire
avec les conteneurs
 - Il est essentiel de comprendre le comportement des

Installer l'application Bookey pour débloquer le
texte complet et l'audio

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 13 Résumé : 14 Raffinement
Successif

Résumé du Chapitre 14 : Raffinement Successif

Introduction

Ce chapitre présente une étude de cas illustrant le concept de

raffinement successif en revisitant un analyseur d'arguments

en ligne de commande implémenté en Java, nommé Args.

L'implémentation initiale est décrite comme simple mais finit

par devenir désordonnée à mesure qu'elle gagne en

complexité.

Implémentation Initiale

La classe Args permet de parser des arguments en ligne de

commande définis par une chaîne de schéma. La

fonctionnalité de base inclut des arguments booléens, entiers

et de chaîne. Cependant, le design devient encombrant en

raison d'une fonctionnalité étendue qui introduit de

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

nombreuses variables d'instance et un traitement des erreurs

compliqué.

Processus de Refactoring

Le chapitre détaille le processus de refactoring de ce code

désordonné à travers des améliorations successives et

incrémentales tout en maintenant une suite de tests

fonctionnels. Une approche clé est d'utiliser le

développement dirigé par les tests (TDD), garantissant que

chaque changement maintienne le système fonctionnel.

-

Modèles de Conception
 : L'introduction de l'interface ArgumentMarshaler permet

d'aborder de manière structurée la gestion des différents

types d'arguments sans encombrer la classe principale Args.

-

Changements Incrémentaux
 : Chaque changement est minime et vise à rendre le code

plus propre tout en réussissant les tests, déplaçant les

fonctionnalités vers leurs classes respectives (par exemple,

StringArgumentMarshaler, IntegerArgumentMarshaler).

-

Gestion des Erreurs

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

 : Une nouvelle classe ArgsException consolide le traitement

des exceptions de manière à séparer les préoccupations de la

classe Args.

Structure Finale

La classe Args refactorisée devient plus modulaire, avec des

responsabilités plus claires déléguées à différents

composants, ce qui améliore la lisibilité et la maintenabilité.

Enfin, le chapitre souligne que le code doit être

continuellement gardé propre pour éviter la dégradation qui

accompagne le mauvais code.

Conclusion

CODER PROPREMENT est crucial non seulement pour la

fonctionnalité immédiate mais aussi pour la longévité et la

santé des projets de développement. Un raffinement et une

amélioration continus garantissent que le code reste gérable,

évitant les pièges de la dette technique accumulée due à de

mauvaises implémentations initiales ou à un développement

précipité.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Exemple

Point clé:L'importance de l'affinage successif dans le

développement de code.

Exemple:Imaginez que vous développez une application

en ligne de commande et que vous commencez par

implémenter un simple parseur d'arguments. En ajoutant

de nouvelles fonctionnalités—comme la gestion de

différents types d'arguments et l'amélioration des

messages d'erreur—vous remarquez que votre code

devient de plus en plus complexe. Chaque fois que vous

ajoutez quelque chose, vous pourriez prendre un

moment pour refactoriser juste une partie à la fois, en

vous assurant que chaque changement est petit et

maintient la fonctionnalité, conduisant à un design plus

propre et plus modulaire. Ce processus itératif d'affinage

peut empêcher votre code de devenir ingérable et

garantir qu'il reste adaptable à mesure que votre

application évolue.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 14 Résumé : 15 Les Internes de
JUnit

Les Internes de JUnit

Aperçu du Cadre JUnit

JUnit, un cadre de test Java renommé, est né des efforts

collaboratifs de Kent Beck et Eric Gamma. Ils ont développé

le cadre lors d'une conversation dans un avion à destination

d'Atlanta, synthétisant des éléments provenant du travail

précédent de Beck avec Smalltalk. L'accent de ce chapitre est

mis sur le `ComparisonCompactor`, un module conçu pour

rationaliser les erreurs de comparaison de chaînes.

Module ComparisonCompactor

Le `ComparisonCompactor` identifie les différences entre

deux chaînes, présentant les variations dans un format clair

(par exemple, `<...B[X]D...>`). Le chapitre inclut une critique

approfondie de la structure de test, soulignant l'efficacité des

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

tests mis en œuvre dans `ComparisonCompactorTest.java`.

Revue des Cas de Test

Les cas de test couvrent divers scénarios :

- Incohérences de message

- Chaînes identiques

- Correspondances contextuelles au début et à la fin

Les tests offrent une couverture complète, garantissant que

chaque ligne de code dans `ComparisonCompactor` est

exécutée, contribuant ainsi à la confiance dans son

fonctionnement.

Examen du Code

1.

Mise en œuvre Initiale
 : La mise en œuvre originale du `ComparisonCompactor` est

révisée, identifiant des points forts en clarté et en structure.

2.

Identification des Refactorisations
 : Les observations sur le code révèlent des opportunités

d'amélioration, notamment :

 - Conventions de nommage redondantes (par exemple,

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

préfixes)

 - Encapsulation des conditionnels pour une meilleure

lisibilité

 - Inversion des conditions négatives pour plus de clarté

3.

Refactorisation Itérative
 : Le processus de refactorisation se déroule de manière

incrémentale, conduisant souvent à des réévaluations de

changements précédemment réalisés. L'importance de la

lisibilité et du maintien de la cohérence des variables est

soulignée tout au long.

Mise en œuvre Finale

La version finale du `ComparisonCompactor` présente un

module bien structuré avec des fonctions d'analyse et de

synthèse distinctes. La conception suit les meilleures

pratiques, garantissant que les fonctions connexes sont

regroupées logiquement et que leurs définitions apparaissent

près de leur utilisation dans le code.

Conclusion

Le chapitre se termine par une réflexion sur la Règle du Boy

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Scout, soulignant le raffinement itératif du code. Il met en

avant la responsabilité des développeurs de continuer à

améliorer la qualité de la base de code, favorisant une culture

d'excellence et de maintenabilité.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 15 Résumé : 16 Refactorisation
de SerialDate

Refactorisation de SerialDate : Aperçu

Dans ce chapitre, Robert C. Martin effectue un examen

détaillé et une refactorisation de la classe SerialDate de la

bibliothèque JCommon. Malgré la compétence de l'auteur

original, l'analyse met en évidence plusieurs axes

d'amélioration, en mettant l'accent sur la critique

professionnelle comme outil d'apprentissage pour les

développeurs.

Critique et Raisons de la Refactorisation

L'auteur reconnaît la qualité initiale du code mais entame le

processus de refactorisation dans le but d'améliorer la

couverture des tests et la fonctionnalité globale. Les

observations clés comprennent :

1.

Couverture de Test Insuffisante
 : Les tests initiaux ne couvraient pas adéquatement la

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

fonctionnalité de SerialDate, ce qui a conduit à la création

d'une suite de tests plus complète.

2.

Bugs et Flaws Logiques
 : La refactorisation identifie des bugs spécifiques, tels que le

traitement incorrect des conditions limites et des

fonctionnalités de méthode qui contredisaient les attentes.

Étapes de Refactorisation : Faire Fonctionner, Puis
Rendre Correct

1.

Amélioration de la Couverture des Tests
 : La première étape a consisté à écrire de nouveaux tests qui

byraient des zones préoccupantes. Les tests existants étaient

souvent commentés en raison de cas échoués.

2.

Correction des Bugs et Clarté du Code
 : Les corrections ultérieures ont traité les erreurs logiques

tout en simplifiant le code :

 - Simplification des méthodes en éliminant les vérifications

redondantes et en intégrant de nouvelles fonctionnalités.

 - Refactorisation des aspects du code pour une meilleure

lisibilité et maintenabilité.

Installer l'application Bookey pour débloquer le
texte complet et l'audio

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 16 Résumé : 17 Odeurs et
Heuristiques

Chapitre 17 : Odeurs et Heuristiques

Dans ce chapitre, Robert C. Martin compile une liste

complète des "Odeurs de Code" et des heuristiques associées

qui aident les programmeurs à reconnaître les mauvaises

pratiques dans le code et à les refactoriser en CODER

PROPREMENT.

Commentaires

-

Informations Inappropriées
 : Les commentaires ne devraient pas contenir de données

historiques plus adaptées aux systèmes de versionnage.

-

Commentaire Obsolète
 : Les commentaires obsolètes doivent être mis à jour ou

supprimés pour éviter toute confusion.

-

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Commentaire Redondant
 : Les commentaires qui se contentent de répéter ce que le

code exprime sont inutiles.

-

Commentaire Mal Rédigé
 : Les commentaires doivent être bien écrits, clairs et concis.

-

Code Commenté
 : Enlevez le code commenté pour éviter le désordre et la

confusion.

Environnement

-

Construction Nécessite Plus D'une Étape
 : Le processus de construction doit être simplifié et efficace.

-

Tests Nécessitent Plus D'une Étape
 : L'exécution des tests doit être simple et rapide.

Fonctions

-

Trop D'Arguments

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

 : Limitez les arguments de fonction à trois ou moins pour

plus de clarté.

-

Arguments de Sortie
 : Évitez d'utiliser des arguments comme sorties ; les

fonctions doivent modifier l'état de l'objet auquel elles

appartiennent.

-

Arguments de Drapeau
 : Éliminez les drapeaux booléens qui troublent l’objectif de

la fonction.

-

Fonction Inactive
 : Supprimez les fonctions inutilisées pour garder le code

propre.

Principes Généraux

-

Langues Multiples Dans Un Fichier Source
 : Efforcez-vous d'utiliser une seule langue par fichier pour

plus de clarté.

-

Comportement Évident Non Implémenté

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

 : Les fonctions doivent fournir un comportement attendu

pour maintenir la confiance.

-

Comportement Incorrect Aux Limites
 : Toujours tester les conditions limites.

-

Sécurités Plus Réglées
 : Évitez de contourner les mécanismes de sécurité dans le

code.

-

Duplication
 : Éliminez le code dupliqué car il représente des occasions

d'abstraction manquées.

-

Code Au Mauvais Niveau D'Abstraction
 : Maintenez une séparation entre les concepts de code de

haut niveau et de bas niveau.

-

Classes de Base Dépendant de Leurs Dérivées
 : Les classes de base doivent rester indépendantes de leurs

dérivées.

Odeurs de Conception

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

-

Trop D'Informations
 : Gardez les interfaces de module petites pour minimiser la

complexité.

-

Code Mort
 : Enlevez le code qui n'est jamais exécuté.

-

Séparation Verticale
 : Gardez la définition proche de l'utilisation pour plus de

clarté.

-

Incohérence
 : Maintenez des noms et des méthodologies uniformes dans

l'ensemble du code.

-

Désordre
 : Enlevez les constructions inutiles ou inutilisées du code.

Cohésion et Complexité

-

Cohésion Artificielle
 : Ne coupez pas des composants non liés ensemble sans

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

raison.

-

Envie de Fonctionnalité
 : Assurez-vous que les méthodes utilisent les attributs de

leur propre classe plutôt que ceux d'une autre.

-

Arguments de Sélecteur
 : Évitez d'utiliser des arguments de sélecteur ambigus dans

les signatures de méthode.

-

Intention Obscurcie
 : Écrivez du code clair et expressif pour communiquer

l'intention.

-

Responsabilité Mal Placée
 : Placez la fonctionnalité là où elle appartient logiquement.

Algorithme et Logique

-

Comprendre l'Algorithme
 : Assurez-vous de comprendre les algorithmes utilisés, ne

vous fiez pas uniquement à la réussite des tests.

-

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Rendre les Dépendances Logiques Physiques
 : Établissez des dépendances explicites entre les modules.

-

Préférez le Polymorphisme aux If/Else ou
Switch/Case
 : Réduisez la complexité grâce à des méthodes

polymorphiques plutôt qu'à des commutateurs.

Nommage et Tests

-

Choisissez des Noms Descriptifs
 : Utilisez des noms clairs et informatifs pour les variables et

les fonctions.

-

Couverture de Test
 : Maintenez des tests complets pour couvrir tous les

problèmes potentiels.

-

Tester les Conditions Limites
 : Portez une attention particulière aux limites des données

d'entrée et aux cas extrêmes.

Conclusion

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Ce chapitre renforce l'idée que le CODER PROPREMENT

découle d'un ensemble de valeurs et de principes plutôt que

de règles rigides. Les heuristiques et les odeurs servent à

guider les développeurs vers de meilleures pratiques,

conduisant finalement à un artisanat amélioré dans le

développement logiciel.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 17 Résumé : A : Concurrence II

Résumé du Chapitre 17 : Concurrence II

Vue d'ensemble

Ce chapitre offre des éclairages sur la concurrence et le

multithreading en programmation, en mettant

particulièrement l'accent sur les applications client/serveur et

l'amélioration des performances grâce au traitement

concurrent.

Exemple Client/Serveur

- Un serveur de base attend des connexions clients, traite les

messages entrants, puis renvoie des réponses.

- Un client simple se connecte au serveur, envoie une requête

et traite la réponse.

Mise en œuvre du Serveur

- La mise en œuvre du serveur consiste à accepter les

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

connexions et à les traiter de manière séquentielle.

- Un test de performance valide que le serveur peut traiter les

requêtes des clients dans un délai défini.

Identification des Goulots d'Étranglement de
Performance

- Les performances peuvent être limitées par l'E/S (par

exemple, attendre des données d'un socket) ou par le

processeur (par exemple, les tâches de calcul).

- Si le serveur est limité par l'E/S, le multithreading peut

améliorer l'efficacité en permettant d'autres opérations

pendant les périodes d'attente d'E/S.

Introduction du Multithreading pour Améliorer les
Performances

- Le multithreading peut aider à améliorer le débit si

l'application est limitée par l'E/S.

- Le chapitre traite de la modification du serveur pour gérer

les connexions clients en utilisant des threads séparés.

Séparation des Responsabilités

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

- La gestion des threads doit être isolée pour maintenir un

CODER PROPREMENT; fusionner plusieurs responsabilités

dans une seule méthode viole le Principe de Responsabilité

Unique.

- Le code conçu pour le multithreading doit se concentrer

exclusivement sur la gestion des threads.

Modèles de Conception pour la Gestion des Threads

- Des abstractions appropriées, telles que la séparation de la

connexion client et du traitement des requêtes, améliorent la

clarté et la maintenabilité du code.

Défis de la Concurrence

- La complexité du multithreading crée des problèmes

potentiels comme les conditions de course et les

interblocages.

- Comprendre comment gérer efficacement les ressources

partagées est crucial pour éviter les problèmes de

concurrence.

Prévention des Interblocages

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

- Le chapitre décrit les conditions nécessaires à l'occurrence

des interblocages et les stratégies de prévention, qui incluent

l'évitement des attentes circulaires et l'établissement d'une

hiérarchie de verrouillage.

Tests de Code Multithread

- Des défis de test émergent en raison de la nature

imprévisible de la concurrence.

- Des stratégies comme le Test de Monte Carlo et l'utilisation

d'outils (comme ConTest) peuvent aider à exposer plus

efficacement les problèmes de threading.

Conclusion

- Une gestion efficace de la concurrence nécessite des

approches de conception et de test soigneuses pour éviter les

pièges courants.

- Comprendre les principes de la concurrence est essentiel

pour construire des applications évolutives et efficaces. Une

lecture approfondie des techniques de programmation

concurrente, comme les travaux de Doug Lea, est

recommandée pour une compréhension plus approfondie.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Pensée critique

Point clé:Utilisation des threads pour améliorer les

performances

Interprétation critique:Bien que le chapitre souligne

l'utilisation des threads comme solution pour améliorer

la performance des serveurs, il est important de se

demander si plus de threads équivalent toujours à une

meilleure efficacité ; les subtilités de la concurrence

peuvent mener à des problèmes complexes et à des

rendements décroissants, suggérant que le point de vue

de l'auteur n'est peut-être pas universellement applicable

dans tous les contextes. Des ouvrages complémentaires,

comme "Concurrency in Go" de Katherine Cox-Buday,

mettent en avant des paradigmes alternatifs qui peuvent

gérer efficacement des tâches concurrentes sans recourir

uniquement aux threads traditionnels.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 18 Résumé : B:
org.jfree.date.SerialDate

Résumé du Chapitre 18 - CODER PROPREMENT

Aperçu de la classe SerialDate

La classe `SerialDate` offre une abstraction pour la

manipulation des dates qui évite d'être liée à une

implémentation spécifique. Elle propose une représentation

plus simple que `java.util.Date`, en se concentrant sur le jour,

le mois et l'année sans précision temporelle ni problèmes de

fuseau horaire.

Caractéristiques principales :

-

Classe immuable :
 La conception garantit que les instances de `SerialDate` sont

immuables.

-

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Compatibilité avec Excel :
 La classe répond à des exigences spécifiques basées sur la

gestion des dates par Microsoft Excel.

-

Options de constructeur :
 Permet de créer des dates à travers plusieurs méthodes de

fabrique, y compris à partir de représentations `int` et de la

classe `java.util.Date`.

Méthodes utilitaires :

- Méthodes pour obtenir le jour de la semaine, le mois et

l'année.

- Utilitaires de conversion entre chaînes de caractères et

représentations de dates.

- Fonctions pour ajouter et soustraire des jours, des mois et

des années à une date.

Gestion des erreurs et validations :

La classe comprend des mécanismes pour s'assurer que les

valeurs d'entrée sont valides, et elle gère systématiquement

les cas limite (par exemple, les scénarios de fin de mois).

Installer l'application Bookey pour débloquer le
texte complet et l'audio

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 19 Résumé : C : Références
croisées des heuristiques

Annexe C : Références croisées des heuristiques

Présentation

Cette annexe fournit une référence croisée détaillée de

diverses heuristiques et des odeurs de code associées tirées

du livre "CODER PROPREMENT" de Robert C. Martin.

Liste des heuristiques

-

C1
 : 16-276A, 16-279A, 17-292A

-

C2
 : 16-279A, 16-285A, 16-295A, 17-292A

-

C3

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

 : 16-283A, 16-285A, 16-288A, 17-293A

-

C4
 : 17-293A

-

C5
 : 17-293A

-

E1
 : 17-294A

-

E2
 : 17-294A

-

F1
 : 14-239A, 17-295A

-

F2
 : 17-295A

-

F3
 : 17-295A

-

F4

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

 : 14-289A, 16-273A, 16-285A, 16-287A, 16-288A, 17-295A

-

G1
 : 16-276A, 17-295A

-

G2
 : 16-273A, 16-274A, 17-296A

-

G3
 : 16-274A, 17-296A

-

G4
 : 9-31A, 16-279A, 16-286A, 16-291A, 17-297A

-

G5
 : 9-31A, 16-279A, 16-286A, 16-291A, 16-296A, 17-297A

-

G6
 : 6-106A, 16-280A, 16-283A, 16-284A, 16-289A, 16-293A,

16-294A, 16-296A, 17-299A

-

G7
 : 16-281A, 16-283A, 17-300A

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

-

G8
 : 16-283A, 17-301A

-

G9
 : 16-283A, 16-285A, 16-286A, 16-287A, 17-302A

-

G10
 : 5-86A, 15-264A, 16-276A, 16-284A, 17-302A

-

Autres heuristiques
 : Des heuristiques supplémentaires (G11 à T9) sont listées

avec leurs références croisées respectives.

Conclusion

Cette référence croisée sert de ressource essentielle pour les

développeurs cherchant à améliorer la qualité du code en

identifiant les odeurs potentielles de code et en appliquant les

heuristiques appropriées dans leurs pratiques de

programmation.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 20 Résumé : Index

Résumé du Chapitre 20

Concepts Clés et Principes

- Détection des erreurs d'opérateur, importance de CODER

PROPREMENT pour éviter les ambiguïtés.

- Les classes abstraites et les interfaces sont essentielles pour

une bonne abstraction et structuration du code.

- La loi de Demeter souligne le couplage minimal et la

facilité de maintenance, mettant en avant l'utilisation de

fonctions d'accès.

Qualité du Code

- Compréhension du code de mauvaise qualité, du désordre,

et de la valeur d'un code propre.

- Importance des commentaires, à la fois comme

amplificateurs d'importance et comme maux nécessaires pour

clarifier le contexte.

- Gestion de la complexité, en mettant l'accent sur de petites

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

fonctions, la cohésion des classes et le maintien d'un style

cohérent.

Tests et Fiabilité

- Accent sur les cadres de tests automatisés comme JUnit

pour assurer des pratiques de CODER PROPREMENT.

- Importance d'écrire des tests qui sont auto-validants et

réduisent le nombre de dépendances.

- Nécessité de tests opportunes qui valident selon les

principes de conception et préservent contre les changements.

Refactoring et Maintenance

- Attention constante à maintenir la santé du code pour éviter

la dette technique.

- Mise en œuvre du refactoring comme un processus continu,

et non pas juste un correctif ponctuel.

- Accent sur les conventions de nommage et les identifiants

descriptifs comme essentiels pour comprendre et maintenir la

clarté du code.

Concurrence et Performance

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

- Discussion détaillée sur l'évitement des pièges dans la

programmation concurrente.

- Stratégies pour s'assurer que les applications

multi-threadées sont efficaces et exemptes de scénarios

d'interblocage courants.

- Application pratique des modèles de conception qui

améliorent la structure du code tout en facilitant l'évolutivité.

Meilleures Pratiques et Modèles

- Utilisation de modèles de conception comme Abstract

Factory et Decorator pour favoriser un code propre et

maintenable.

- Une compréhension solide des principes SOLID pour la

conception orientée objet soutient l'adaptabilité à long terme.

- Modèles d'échec, redondance, et le concept de Ne Pas

Répéter Vous-Même (DRY) comme lignes directrices

essentielles.

Conclusion

- Respect des principes de CODER PROPREMENT améliore

la robustesse, la maintenabilité et l'utilisabilité du code.

- L'apprentissage continu et l'adaptation sont vitaux pour les

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

développeurs pour rester pertinents et produire des logiciels

de haute qualité.

- Accent sur le rôle du programmeur en tant qu'auteur,

responsable de fournir clarté et intention à travers le code.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Pensée critique

Point clé:L'importance des pratiques de CODER

PROPREMENT est peut-être simplifiée à l'extrême.

Interprétation critique:Alors que Robert C. Martin

défend les pratiques de CODER PROPREMENT

comme étant fondamentales pour la fiabilité des

logiciels, il faut considérer que la qualité du code peut

dépendre du contexte et être subjective. Certains

développeurs soutiennent qu'un accent excessif sur la

propreté du code peut entraîner une 'paralysie d'analyse',

où la quête de la perfection freine le progrès et

l'innovation (N. M. Thomas, 'Le Programmeur

Pragmatique'). De plus, le respect rigoureux de certains

principes ne donne pas toujours des avantages tangibles

dans des scénarios réels, comme le soulignent les

discussions sur la 'Dette Technique' de Martin Fowler.

Cela suggère que, bien que le CODER PROPREMENT

soit important, il est impératif de l'équilibrer avec des

considérations pragmatiques spécifiques à la dynamique

du projet et de l'équipe.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 21 Résumé : Introduction
Préalable

Résumé du Chapitre 21 : Professionnalisme en
Programmation

Introduction au Professionnalisme

- L'auteur souligne l'importance du professionnalisme en

programmation, s'appuyant sur 421 ans d'expériences

personnelles dans le domaine.

- Le chapitre vise à définir les attitudes, disciplines et actions

qui caractérisent un programmeur professionnel.

Expériences Initiales

- L'auteur se souvient de ses débuts en tant que programmeur

à l'âge de 17 ans, où il était initialement peu professionnel.

- Sa première mission consistait à éditer des manuels

d'ordinateur IBM et à écrire un programme basique, mettant

en évidence une courbe d'apprentissage abrupte.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Apprendre par les erreurs

- L'auteur détaille ses premières expériences de

programmation avec des processus manuels, tels que le

codage sur des formulaires et l'utilisation de machines à

perforer.

- Il a rencontré des défis avec des erreurs de programme et a

appris à dépanner avec l'aide de collègues expérimentés.

Parcours Professionnel

- Après avoir travaillé brièvement dans diverses fonctions,

l'auteur est devenu programmeur à plein temps et a contribué

de manière significative à un système de comptabilité en

temps réel.

- Lui et ses collègues ont quitté leur emploi par frustration

face à des augmentations insuffisantes, illustrant la volatilité

émotionnelle à laquelle les jeunes professionnels peuvent

faire face.

Réflexions sur les Erreurs

- Après sa démission, l'auteur a connu le chômage et a

Installer l'application Bookey pour débloquer le
texte complet et l'audio

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 22 Résumé : 1
Professionnalisme

PROFESSIONNALISME

Introduction au Professionnalisme

Devenir un développeur logiciel professionnel signifie

embrasser à la fois la fierté et la responsabilité. Les

professionnels assument la responsabilité de leurs actions,

contrairement aux non-professionnels qui rejettent la faute

sur les autres.

Prendre des Responsabilités

Le professionnalisme incarne le principe de prendre des

responsabilités pour son travail, illustré par des expériences

passées qui soulignent l'importance des tests et de la

responsabilité. Un véritable professionnel apprend de ses

erreurs et assume les fautes.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Primauté de l'Intérêt

Pour maintenir un standard professionnel, les développeurs

doivent s'efforcer de ne pas introduire de bugs dans leur

logiciel. Il est vital que le logiciel fonctionne de manière

fiable, et les professionnels doivent accepter l’inévitabilité

des erreurs tout en travaillant assidûment pour réduire leur

occurrence. Des soumissions de code négligentes

compromettent la qualité du travail et violent les normes

éthiques.

Connaître Son Domaine

Une compréhension approfondie des concepts fondamentaux,

des principes et des terminologies en ingénierie logicielle est

essentielle. Les professionnels doivent se tenir au courant des

avancées tant historiques que contemporaines dans le

domaine. Un apprentissage régulier à travers divers formats,

y compris des livres et des conférences, est crucial.

Apprentissage et Pratique Continue

La nature rapide du secteur logiciel nécessite un

apprentissage et une pratique constants. Les professionnels

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

perfectionnent leurs compétences par divers exercices, de la

même manière que les musiciens pratiquent leur art de

manière régulière.

Collaboration et Mentorat

Le véritable apprentissage se produit souvent par la

collaboration avec des pairs. Les professionnels en herbe

devraient s'efforcer de travailler ensemble et de mentoriser

les autres, améliorant ainsi leurs propres connaissances et

aidant à la croissance des juniors.

Compréhension de Son Domaine

Un développeur logiciel professionnel doit posséder une

compréhension de base du domaine dans lequel il travaille.

Une connaissance adéquate permet aux développeurs de

mieux comprendre les spécifications commerciales, en

reconnaissant les divergences lorsqu'elles se présentent.

S'Identifier à Son Employeur/Client

Le développement professionnel est ancré dans l'empathie et

la compréhension des besoins de l'employeur. En alignant les

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

objectifs personnels avec ceux de l'organisation, un

développeur peut fournir de meilleures solutions.

Humilité dans le Professionnalisme

Bien que la confiance soit essentielle en programmation,

l'humilité est tout aussi vitale. Reconnaître ses limites et le

potentiel d'échec favorise la croissance. De vrais

professionnels équilibrent assurance et reconnaissance de

leur faillibilité.

Conclusion

Le professionnalisme dans le développement logiciel est un

concept multifacette impliquant responsabilité, apprentissage

continu, collaboration et humilité. En adhérant à ces

principes, les développeurs peuvent susciter le respect et

maintenir un haut standard dans leur domaine.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 23 Résumé : 2 Dire Non

 DIRE NON

 Introduction

- Une anecdote personnelle de l'auteur sur un projet de

système comptable en temps réel qui a mal tourné à cause de

délais irréalistes et de mauvaises décisions de gestion.

- Met en lumière l'importance de dire "non" dans les

contextes professionnels, surtout lorsqu'on est confronté à

des demandes déraisonnables.

 Rôles Adverses

- Discute des dynamiques entre les managers et les

développeurs, en soulignant que la confrontation peut mener

à de meilleurs résultats.

- Les professionnels sont censés s'opposer aux demandes

irréalistes au lieu de simplement approuver tout ce que disent

leurs supérieurs.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

 Négociation pour de Meilleurs Résultats

- Illustre l'importance de la négociation pour atteindre des

objectifs communs.

- Encourage les professionnels à représenter de manière

assertive leurs estimations et capacités afin d'éviter les

malentendus et les déceptions.

 Situations à Hauts Enjeux

- Insiste sur le fait que dire non devient d'autant plus crucial

lorsque les enjeux sont élevés. Fournir les meilleures

informations peut nécessiter de résister à la pression

managériale.

 Joueur d'Équipe vs. Fausse Coopération

- Définit ce que signifie être un vrai joueur d'équipe : plaider

pour des objectifs réalistes plutôt que d'approuver

simplement des délais impossibles.

- Met en avant la manière dont certaines personnes exploitent

le terme "joueur d'équipe" pour manipuler des situations à

des fins personnelles.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

 Les Dangers du "Essayer"

- Critique la notion de "essayer" de réaliser des tâches, en

raisonnant sur la nécessité d'engagements clairs plutôt que de

promesses vagues.

- Encourage les professionnels à avoir des plans d'action

concrets plutôt que de simuler des efforts ou de prolonger les

délais sans fondement.

 Agression Passive

- Discute des risques du comportement passif-agressif en

milieu de travail et de la nécessité d'une communication

directe pour éviter les malentendus et les échecs de projet.

 Le Coût de Dire Oui

- Explore une étude de cas d'un développeur qui s'est trop

engagé sur un projet avec un calendrier et une portée

irréalistes, entraînant une qualité de travail médiocre et un

épuisement personnel.

- Met en lumière que, bien que les clients ne puissent pas

comprendre les subtilités du codage de qualité, les

développeurs doivent maintenir leurs normes et dire non

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

lorsque cela est nécessaire.

 Conclusion

- Conclut en réaffirmant l'importance du professionnalisme

dans le développement logiciel.

- Soutient que du bon code n'est pas impossible mais

nécessite que les développeurs disent non à des demandes

déraisonnables et maintiennent leur intégrité professionnelle.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Pensée critique

Point clé:L'importance de dire 'non' à des demandes

déraisonnables dans un contexte professionnel.

Interprétation critique:Bien que la perspective de

l'auteur sur l'advocacy de buts réalistes soit précieuse,

elle pourrait négliger la complexité des dynamiques de

travail et le potentiel de négociation qui pourrait aboutir

à des accords amicaux. L'affirmation selon laquelle dire

'non' est toujours la meilleure stratégie doit être abordée

avec prudence, car il peut y avoir des situations où le

compromis mène à des résultats mutuellement

bénéfiques ou favorise un environnement collaboratif.

Diverses études, telles que celles de Robert Cialdini sur

l'influence et la persuasion, suggèrent que l'équilibre

entre assertivité et empathie peut être crucial pour

naviguer dans les relations professionnelles, et qu'une

approche collaborative peut parfois donner de meilleurs

résultats à long terme que des refus catégoriques.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 24 Résumé : 3 Dire Oui

DIRE OUI

Introduction à l'ER et l'Engagement

Ce chapitre commence par une anecdote personnelle de

Robert C. Martin sur l'invention de la messagerie vocale,

précisément "Le Réceptionniste Électronique" (ER), mettant

en lumière les défis pour obtenir le soutien et l'engagement

d'une entreprise. Il souligne la nécessité de la responsabilité

personnelle lorsqu'il s'agit de faire des engagements.

Un Langage d'Engagement

Roy Osherove aborde les trois composantes de l'engagement

: dire que vous le ferez, le penser réellement, et le faire

réellement. Il souligne que beaucoup de gens ne tiennent pas

leurs promesses, utilisant souvent un langage vague qui

reflète un manque de véritable engagement. Des mots comme

"avoir besoin," "espérer," "souhaiter," et "faisons" signalent

des attitudes non engageantes, tandis que des phrases

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

définitives comme "je le ferai" reflètent une véritable

responsabilité.

Reconnaître le Manque d'Engagement

Le texte met en avant l'importance du langage pour

comprendre les niveaux d'engagement et décrit des phrases

spécifiques qui indiquent un manque d'engagement.

Reconnaître ces mots aide les individus à identifier les

comportements non engageants en eux-mêmes et chez les

autres.

À Quoi Ressemble un Engagement

Un véritable engagement se manifeste par des déclarations

claires et définitives sur les actions que l'on va entreprendre,

ce qui permet de rendre compte. Le chapitre insiste sur le fait

que les engagements doivent être pris uniquement concernant

des actions sous notre contrôle. Des exemples d'engagements

responsables sont donnés pour illustrer ce propos.

Communiquer sur les Défis et les Ajustements

L'importance de communiquer les défis lorsque les

Installer l'application Bookey pour débloquer le
texte complet et l'audio

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 25 Résumé : 4 Codage

CHAPITRE 25 : CODAGE

Introduction au Codage

- Ce chapitre aborde le codage comme une activité

intellectuelle influencée par le comportement personnel,

l'humeur et les attitudes.

- L'auteur partage des expériences personnelles concernant

l'importance de la confiance et du sens de l'erreur dans le

codage.

Préparation

- Le codage demande une concentration intense, car plusieurs

facteurs doivent être gérés :

 1. Le code doit fonctionner comme une solution au

problème posé.

 2. Répondre aux véritables besoins du client, qui peuvent

différer de ses exigences déclarées.

 3. S'assurer que le code s'intègre bien dans le système

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

existant sans augmenter la complexité.

 4. Écrire un code lisible qui exprime clairement l'intention.

- Les distractions peuvent entraîner des résultats de codage

médiocres. Il est essentiel d'éliminer les distractions et de

maintenir une clarté mentale.

Impact de l'Environnement et de l'État d'Esprit

- Coder lorsqu'on est fatigué ou distrait conduit à de mauvais

résultats, comme l'illustre une anecdote impliquant une

mauvaise expérience de codage à 3 heures du matin.

- Les préoccupations personnelles peuvent affecter la

concentration. Trouver du temps dédié pour traiter les

inquiétudes améliore la productivité.

Zone de Flux

- Entrer dans le "flux" ou la "zone" peut sembler productif

mais peut conduire à négliger des aspects cruciaux du design.

- Des stratégies comme faire des pauses ou la programmation

en binôme peuvent aider à maintenir une perspective plus

large.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Musique de Fond et Interruptions

- Les expériences personnelles montrent que la musique peut

distraire du codage plutôt que d'aider à la concentration.

- Le professionnalisme implique d'être courtois face aux

interruptions ; les distractions gérables peuvent être traitées

en collaboration par des techniques comme la programmation

en binôme.

Blocages de Codage

- Les blocages mentaux en codage peuvent parfois être

surmontés en travaillant avec un partenaire, ce qui favorise

un changement physiologique qui encourage la créativité.

- S'engager avec des idées créatives provenant de divers

domaines, en particulier la science-fiction, peut inspirer la

créativité en codage.

Débogage

- Les expériences de débogage sous haute pression

soulignent le besoin de meilleurs outils et pratiques, comme

le Développement Dirigé par les Tests (TDD), qui peuvent

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

réduire considérablement le temps de débogage.

Gestion de Son Temps

- Le développement logiciel nécessite une gestion durable de

l'énergie et de la créativité. Reconnaître quand s'éloigner et

revenir rafraîchi permet de mieux résoudre les problèmes.

Gestion des Délais

- Une gestion efficace des retards implique des évaluations

de progression honnêtes et basées sur des faits. Évitez de

tomber dans le piège de la livraison fallacieuse ; établissez

une définition claire de « terminé » avec des tests

d'acceptation automatisés.

Éthique Professionnelle et Collaboration

- La programmation est complexe et nécessite souvent

collaboration ; offrir de l'aide et solliciter de l'assistance est

une obligation professionnelle.

- Le mentorat est essentiel pour le développement des

programmeurs juniors ; les développeurs chevronnés ont la

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

responsabilité de les guider.

Conclusion

- Le succès en codage et en développement logiciel repose

sur le maintien d'une clarté mentale, la gestion du stress, la

promotion de la collaboration et le respect des pratiques

éthiques tant dans les contextes personnels que d'équipe.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Pensée critique

Point clé:L'environnement de codage a un impact

significatif sur la productivité et la qualité du code.

Interprétation critique:Bien que Robert C. Martin mette

l'accent sur l'état d'esprit et le rôle de l'environnement

dans le succès de la programmation, cette perspective

peut exagérer l'importance du contrôle individuel. Des

philosophes comme Karl Popper soutiennent que la

cognition humaine est contrainte par des facteurs

externes, ce qui suggère que les résultats du codage

pourraient également être influencés par des problèmes

systémiques ou organisationnels au-delà de la

concentration et de la préparation personnelles. Ainsi,

bien que la confiance personnelle et la prise de

conscience des erreurs soient cruciales, elles ne

représentent qu'une partie d'un tableau beaucoup plus

large impliquant la dynamique d'équipe et

l'environnement de travail, qui doivent également être

considérés de manière critique.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 26 Résumé : 5 Développement
Driven par les Tests

DÉVELOPPEMENT DRIVEN PAR LES TESTS

Introduction au TDD

- Le TDD a émergé il y a plus de dix ans dans le cadre du

mouvement de la Programmation Extrême (XP) et a été

largement adopté dans les méthodologies Agile.

- L'auteur a initialement abordé le TDD avec scepticisme,

mais l'a ensuite adopté après avoir appris directement de son

promoteur, Kent Beck.

Expériences clés avec le TDD

- L'expérience de l'auteur en codant avec Kent Beck a mis en

lumière l'efficacité du TDD, illustrant de courts cycles avec

une exécution rapide des tests et du code.

- La réalisation d'atteindre des cycles de développement

rapides similaires à ceux des langages interprétés a été un

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

tournant.

Les Trois Lois du TDD

1. Aucun code de production ne peut être écrit tant qu'un test

unitaire échoue.

2. N'écrivez que ce qu'il faut d'un test unitaire pour qu'il

échoue (un échec de compilation est acceptable).

3. N'écrivez que suffisamment de code de production pour

faire passer le test actuellement échoué.

Ces lois facilitent un processus d'itération rapide, favorisant

le développement simultané du code de test et du code de

production.

Avantages du TDD

-

Certitude
 : Des tests fréquents garantissent que les changements de

code n'introduisent pas de nouveaux bugs. Une couverture

élevée des tests unitaires renforce la confiance dans la base

de code.

-

Taux d'injection de défauts

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

 : Le TDD contribue à un taux de défauts plus bas et a montré

une réduction significative des défauts dans diverses

organisations.

-

Courage
 : Avec une suite fiable de tests, les développeurs peuvent

refactoriser ou CODER PROPREMENT sans craindre

d'introduire de nouveaux problèmes.

-

Documentation
 : Les tests unitaires servent de documentation pratique,

démontrant efficacement comment le code doit être utilisé.

-

Amélioration de la conception
 : Le besoin de tests encourage une meilleure conception,

favorisant des structures de code découplées et maintenables.

Adoption professionnelle du TDD

- Le TDD est présenté comme une discipline professionnelle

qui améliore les pratiques de développement. Ne pas utiliser

le TDD peut être considéré comme non professionnel.

Limitations du TDD

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

- Le TDD n'est pas une panacée ; suivre ses lois ne garantit

pas un bon code ou de bons tests.

- Il existe des situations où le TDD peut ne pas être pratique

ou adapté, et les professionnels devraient éviter de s'en tenir

rigidement à des pratiques qui peuvent freiner le progrès.

Conclusion

- Le TDD représente une approche disciplinée vitale pour les

développeurs modernes, soulignant l'importance des tests, de

la conception et de la qualité du code.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 27 Résumé : 6 Pratiquer

PRATIQUER

Introduction

Tous les professionnels pratiquent leur art, et ce chapitre se

concentre sur la manière dont les programmeurs peuvent

améliorer leurs compétences grâce à la pratique.

Quelques éléments de contexte sur la pratique

Bien que la pratique du codage ne soit pas un nouveau

concept, elle s'est formalisée autour du tournant du

millénaire. Un programme simple comme "Hello, World"

sert de rite de passage pour de nombreux programmeurs. Au

fil des décennies, l'acte de programmer a évolué, passant de

longues attente pour les compilations à des cycles rapides de

pratiques de développement modernes comme le Test-Driven

Development (TDD).

Délai de réponse

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

La puissance de calcul disponible aujourd'hui permet aux

programmeurs de travailler beaucoup plus efficacement

qu'auparavant. Les environnements modernes permettent aux

programmeurs de terminer les cycles de compilation et de

test en quelques secondes, offrant ainsi une boucle de

rétroaction rapide. Cette vitesse incite à prendre des décisions

rapides, semblable aux temps de réaction dans les arts

martiaux.

Le Dojo de Codage

Le concept du Dojo de Codage a émergé comme un espace

où les programmeurs peuvent pratiquer des techniques de

codage, souvent dans un cadre communautaire. Les éléments

clés incluent :

-

Kata
: Exercices chorégraphiés où les codeurs peuvent affiner

leurs techniques de résolution de problèmes et leurs

mouvements de codage par la répétition jusqu'à atteindre une

maîtrise instinctive.

-

Installer l'application Bookey pour débloquer le
texte complet et l'audio

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 28 Résumé : 7 Tests
d'acceptation

TESTS D'ACCEPTATION

Le rôle des développeurs professionnels

- Les développeurs professionnels agissent en tant que

communicateurs et bâtisseurs, mettant l'accent sur

l'exactitude de la communication avec les membres de

l'équipe et les parties prenantes.

Communiquer les exigences

- Les malentendus entre les experts métiers et les

programmeurs sont fréquents ; les véritables exigences sont

souvent mal comprises.

- Une rencontre avec Tom, un non-programmeur, a illustré

les complexités de la transformation d'idées de base en

applications réelles, menant à des aperçus sur les besoins des

clients.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Précision prématurée

- Les entreprises et les programmeurs rencontrent des défis

pour rechercher des exigences et des estimations précises

avant le début d'un projet, ce qui entraîne souvent un

gaspillage de ressources.

- Le "Principe d'incertitude" indique que les systèmes en

direct fournissent des aperçus que les exigences statiques ne

peuvent pas capturer, modifiant ainsi la perspective des

parties prenantes.

Ambiguïté tardive

- Retarder la précision entraîne des ambiguïtés dues à des

désaccords ou des suppositions de compréhension par les

parties prenantes, compliquant davantage la communication.

Tests d'acceptation

- Les tests d'acceptation clarifient la définition de "terminé",

s’assurant que toutes les parties s’accordent sur les critères

d'achèvement du projet.

- Ces tests, développés de manière collaborative, établissent

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

des attentes claires quant à la satisfaction des exigences.

Communiquer la clarté et l'automatisation

- Les tests d'acceptation sont essentiels pour clarifier les

exigences, garantissant que toutes les parties soient alignées

sur les fonctionnalités.

- L'automatisation des tests d'acceptation est cruciale pour

réduire les coûts associés aux protocoles de test manuels,

menant à une meilleure fiabilité et efficacité.

Travail et résistance à l'écriture de tests
d'acceptation

- Rédiger des tests d'acceptation détaillés n'est pas un travail

supplémentaire ; c'est une partie intégrante du processus de

spécification, garantissant que le bon système est livré et que

les décisions sur ce que signifie "terminé" sont claires.

Qui écrit les tests d'acceptation ?

- Idéalement, les parties prenantes, les QA ou les analystes

métier devraient collaborer sur les tests, avec les

développeurs impliqués dans la révision et la connexion des

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

tests à leurs mises en œuvre.

Rôle du développeur

- Les développeurs doivent implémenter des fonctionnalités

seulement après que les tests d'acceptation soient en place,

négociant et affinant les tests s'ils sont flous.

Négociation des tests

- Les tests d'acceptation peuvent nécessiter un affinement

pour améliorer la compréhension et la clarté, mettant l'accent

sur l'aspect collaboratif du développement.

Distinction entre les tests d'acceptation et les tests
unitaires

- Les tests d'acceptation se concentrent sur les critères

commerciaux du point de vue des parties prenantes, tandis

que les tests unitaires traitent du comportement interne du

code, ce qui en fait des formes de documentation distinctes.

Défis liés aux interfaces graphiques (GUI)

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

- Les GUI sont subjectives et volatiles, compliquant l'écriture

des tests d'acceptation. Les tests devraient interagir avec les

fonctionnalités de la GUI à un niveau supérieur via des API

définies.

Intégration continue

- Il est essentiel d'exécuter les tests d'acceptation et les tests

unitaires en continu pour détecter les problèmes tôt et

maintenir la fiabilité du logiciel.

Conclusion

- La communication sur les détails du projet est

intrinsèquement difficile. Les tests d'acceptation automatisés

servent de mécanisme formel pour garantir des exigences

claires, minimisant les malentendus entre les développeurs et

les parties prenantes.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 29 Résumé : 8 Stratégies de test

STRATÉGIES DE TEST

Importance de la stratégie de test

Les développeurs professionnels comprennent que le test va

au-delà de l'écriture de tests unitaires et d'acceptation. Une

stratégie de test complète est essentielle pour chaque équipe

de développement.

Chasses aux bugs collaboratives

Lors d'une expérience passée chez Rational, une journée

collaborative de "chasse aux bugs" a rassemblé tous les

membres de l'équipe pour identifier les bogues, favorisant

l'engagement et le sentiment de responsabilité en matière de

qualité au sein de l'équipe.

Objectif de l'assurance qualité (AQ)

L'objectif principal de l'équipe de développement devrait être

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

que l'AQ ne trouve rien à redire. Tous les problèmes

découverts par l'AQ doivent inciter à une enquête

approfondie et à des actions correctives de la part de l'équipe

de développement.

L'AQ comme membre collaboratif de l'équipe

L'AQ devrait travailler aux côtés du développement, agissant

comme spécificateurs et caractérisateurs. Cela implique de

créer des tests d'acceptation automatisés en collaboration

avec le business et de réaliser des tests exploratoires pour

révéler les comportements réels du système.

Pyramide d'automatisation des tests

Une stratégie de test structurée est illustrée dans la Pyramide

d'automatisation des tests, qui montre la variété et la

hiérarchie des tests nécessaires :

1.

Tests unitaires

 - Créés par les développeurs pour la spécification de bas

niveau.

 - Visant une couverture élevée (idéalement dans les 90 %).

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

 - Exécutés dans le cadre de l'intégration continue.

2.

Tests de composants

 - Tests d'acceptation axés sur des composants individuels

du système.

 - Écrits de manière collaborative par l'AQ, le business et le

développement.

 - Ciblent des scénarios typiques, en mettant l'accent sur les

cas de réussite.

3.

Tests d'intégration

 - Évaluent l'interaction entre plusieurs composants.

 - Rédigés par des architectes et axés sur l'intégrité

architecturale.

 - Pas intégrés à l'intégration continue en raison de temps

d'exécution plus longs.

4.

Tests système

 - Tests automatisés pour l'ensemble du système intégré.

 - Garantissent un câblage correct et l'interopérabilité des

composants du système.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

 - Exécutés rarement mais essentiels pour la vérification du

système.

5.

Tests exploratoires manuels

 - Réalisés par des humains pour découvrir des

comportements inattendus.

 - Créatifs par nature, non scénarisés et ne pouvant pas être

entièrement planifiés.

 - Se concentrent sur l'expérience utilisateur globale et les

particularités du comportement.

Conclusion

Bien que le développement dirigé par les tests (TDD) et les

tests d'acceptation soient des composants clés, une stratégie

de test holistique doit incorporer divers types de tests.

L'exécution fréquente de cette hiérarchie de tests aide à

assurer la propreté et la qualité continues du système.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 30 Résumé : 9 Gestion du
Temps

GESTION DU TEMPS

Utilisation Efficace du Temps

- Huit heures correspondent à 480 minutes, donc maximiser

chaque seconde est crucial pour les professionnels.

- Une expérience personnelle en gestion du temps de 1986

impliquait de se réveiller à 5 heures du matin, de faire du

vélo jusqu’au bureau, d’utiliser un emploi du temps détaillé

et d’allouer du temps pour les interruptions.

Réunions et Leur Coût

- Les réunions peuvent coûter environ 200 $ par heure par

participant et gaspillent souvent du temps.

- Deux vérités : les réunions sont nécessaires mais peuvent

être de gros gaspilleurs de temps.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Refuser des Invitations à des Réunions

- Soyez sélectif quant à votre participation aux réunions ;

n'accepté que si c'est nécessaire pour les tâches immédiates.

- Consultez la direction sur votre participation aux réunions

demandées par des figures d'autorité.

Sortir des Réunions Inefficaces

- Si une réunion devient improductive, partez poliment ou

demandez à accélérer les discussions.

- Rester dans des réunions improductives est peu

professionnel.

Structure des Réunions

- Les réunions doivent avoir un ordre du jour clair et un

objectif défini.

- Assurez-vous que les discussions respectent le calendrier

pour une utilisation efficace du temps.

Types de Réunions

- *Réunions Debout*: Sessions rapides où les participants

Installer l'application Bookey pour débloquer le
texte complet et l'audio

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 31 Résumé : 10 Estimation

ESTIMATION

L'estimation est une tâche critique mais redoutable pour les

professionnels du logiciel, influençant la valeur commerciale,

les réputations et les relations entre développeurs et parties

prenantes du secteur.

UNE EXPÉRIENCE ANCESTRALE

En 1978, l’auteur a rencontré des défis avec un projet logiciel

sur des systèmes embarqués fragiles. La solution consistait à

découpler les composants logiciels pour permettre des mises

à jour indépendantes, ce qui rendait le débogage et le

déploiement plus faciles.

PERSPECTIVES SUR L'ESTIMATION

Les parties prenantes commerciales considèrent les

estimations comme des engagements, tandis que les

développeurs les voient comme des suppositions éclairées.

Cette différence peut conduire à des malentendus et à des

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

relations tendues.

ENGAGEMENT VS. ESTIMATION

Un engagement est une livraison garantie à une date

spécifique, nécessitant certitude et responsabilité. En

revanche, une estimation n'est qu'une supposition éclairée,

sans obligation, permettant ambiguïté et variations.

DISTRIBUTION DE PROBABILITÉ DANS LES
ESTIMATIONS

Une estimation efficace nécessite de comprendre que les

estimations représentent une gamme de possibilités plutôt

qu'une date fixe. Communiquer la probabilité est essentiel

pour des attentes plus claires.

LA LOI DE MURPHY ET LES ENGAGEMENTS
IMPLICITES

Reconnaître les incertitudes peut conduire à des engagements

implicites lorsque les parties prenantes recherchent des dates

de réalisation spécifiques, ce qui peut déformer la confiance

réelle du développeur.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

PERT (TECHNIQUE D'ÉVALUATION ET
D'EXAMEN DE PROGRAMME)

Introduit en 1957, PERT aide à la gestion de projet en

incorporant trois types d'estimations (Optimiste, Nominative,

Pessimiste) pour calculer une durée attendue et un écart type.

AGRÉGER LES ESTIMATIONS DE TÂCHES

Lors de la gestion de plusieurs tâches, appliquer PERT

permet de comprendre les délais globaux du projet et de gérer

les risques efficacement.

ESTIMATION DES TÂCHES

Impliquer l'avis de l'équipe améliore la précision des

estimations. Des techniques comme le Wideband Delphi

peuvent générer un consensus lors des efforts d'estimation.

WIDEBAND DELPHI

Le Wideband Delphi de Barry Boehm implique des

discussions en équipe et des estimations successives jusqu'à

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

ce qu'un accord soit atteint. Les méthodes « Doigts Volants »

et « Poker Planning » sont des variations informelles

soulignant la collaboration.

LA LOI DES GRANDS NOMBRES

Décomposer de grandes tâches en plus petites et les estimer

indépendamment peut donner des estimations totales plus

précises, atténuant les erreurs d'estimation.

CONCLUSION

Les développeurs professionnels se concentrent sur la

fourniture d'estimations pratiques sans faire d'engagements

injustifiés. Ils travaillent en collaboration pour garantir un

consensus, communiquant les distributions de probabilité

pour mieux guider la planification. Les techniques décrites

sont des cadres qui se sont révélés efficaces mais ne sont ni

exhaustives ni définitives.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Exemple

Point clé:Comprendre la différence entre les

engagements et les estimations est essentiel pour une

gestion efficace des projets logiciels.

Exemple:Imaginez que vous dirigez une équipe de

développement et qu'un intervenant vous demande

quand une nouvelle fonctionnalité sera prête. Si vous

vous engagez avec assurance à une date précise, vous

risquez de créer sans le vouloir une attente irréaliste

fondée sur l'incertitude. Au lieu de cela, présentez-le

comme une estimation en expliquant les complexités

impliquées, en décrivant les différents scénarios avec

des résultats optimistes, normaux et pessimistes, et en

communiquant clairement que votre estimation est

flexible. Ce changement réduit non seulement la

pression, mais favorise également la confiance, car les

intervenants apprécient la transparence, ce qui conduit à

une meilleure collaboration et à un avancement plus

fluide du projet.

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 32 Résumé : 11 La Pression

Résumé du Chapitre 32 : LA PRESSION

L'IMPORTANCE DU CALME SOUS PRESSION

Lorsqu'ils sont confrontés à des situations de forte pression, il

est primordial pour les professionnels de garder leur calme et

de respecter les pratiques établies. Le comportement d'un

développeur sous stress peut avoir un impact significatif sur

l'environnement de travail, tout comme un chirurgien lors

d'une opération critique.

EXPÉRIENCE PERSONNELLE ET RÉFLEXION

L'auteur raconte son expérience chez Clear Communications,

une start-up en difficulté, où le stress chaotique a entraîné des

pratiques de travail nuisibles et une réflexion personnelle. Un

moment de prise de conscience l'a poussé à changer son

approche, en priorisant le professionnalisme au-dessus du

chaos induit par la pression.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

ÉVITER LA PRESSION

Une des stratégies clés pour rester calme pendant les périodes

stressantes est d'éviter les situations qui mènent à la pression.

Cela inclut de faire attention aux engagements et de s'assurer

que les délais sont réalistes. Les professionnels doivent

évaluer les risques associés aux engagements et les

communiquer efficacement.

RESTER PROPRE

Maintenir la clarté et la propreté dans les pratiques de codage

aide à atténuer la pression. Les professionnels reconnaissent

que bâcler du travail entraîne des complications, qui

ralentissent finalement le progrès.

DISSIPLINE EN PÉRIODE DE CRISE

Le véritable test de la discipline survient lors de situations de

crise. De véritables professionnels respectent leurs

disciplines de travail même sous stress. Si les pratiques sont

efficaces, elles doivent être maintenues quelles que soient les

circonstances.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

GESTION DE LA PRESSION

Lorsque la pression devient inévitable, gérer le stress

efficacement est crucial. Cela implique de ralentir, de

développer un plan clair et de communiquer proactivement

avec l'équipe. Éviter les surprises est essentiel pour

minimiser le stress supplémentaire.

COMPTER SUR LES DISCIPLINES ET
DEMANDER DE L'AIDE

Dans les situations difficiles, s'appuyer sur les pratiques

établies devient encore plus critique. Travailler avec un

partenaire grâce à la programmation en binôme peut aider à

alléger une partie du stress tout en maintenant la

concentration et la discipline.

CONCLUSION

L'essence de la gestion de la pression repose à la fois sur des

techniques d'évitement et des stratégies d'adaptation. Les

professionnels doivent s'efforcer de minimiser la pression en

respectant leurs engagements, en restant organisés et en

maintenant des lignes de communication claires lorsque des

pressions surviennent.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 33 Résumé : 12 Collaboration

CODER PROPREMENT : RÉSUMÉ DU
CHAPITRE 33

Collaboration dans le développement logiciel

La plupart des logiciels sont créés par des équipes, et une

collaboration efficace est essentielle pour le succès de

l'équipe. Les programmeurs professionnels doivent interagir

avec leurs coéquipiers, évitant ainsi l'isolement.

Expérience personnelle et apprentissage

L'auteur partage une histoire personnelle de ses débuts de

carrière, illustrant les défis et les succès de la collaboration

avec un collègue, Tim. Ils ont travaillé à l'optimisation d'un

générateur de références croisées, apprenant par essais et

erreurs. Leur collaboration a mis en lumière les complexités

de l'optimisation logicielle.

La nature du programmeur

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Les programmeurs préfèrent souvent travailler

indépendamment, trouvant les relations interpersonnelles

difficiles. Alors que certains s'épanouissent grâce à la

collaboration, beaucoup aiment se concentrer intensément sur

des problèmes techniques.

Compréhension des objectifs commerciaux

Les professionnels doivent aligner leur travail avec les

objectifs de l'entreprise. Une communication efficace avec

les managers et les pairs aide les programmeurs à

comprendre le contexte plus large de leurs projets. Ignorer les

besoins commerciaux peut mener à des licenciements,

comme le montre l'histoire personnelle de l'auteur, qui a été

renvoyé pour ne pas avoir prêté attention aux priorités

commerciales.

Propriété collective du code

Des équipes dysfonctionnelles peuvent résulter de barrières à

la propriété du code. Les programmeurs devraient posséder le

code collectivement, permettant à n'importe quel coéquipier

d'apporter des améliorations. Cette approche favorise la

Installer l'application Bookey pour débloquer le
texte complet et l'audio

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 34 Résumé : 13 Équipes et
Projets

ÉQUIPES ET PROJETS

Défis d'allocation des projets

Lors de la gestion de plusieurs petits projets, l'allocation des

ressources peut devenir complexe. Souvent, les équipes se

composent d'individus partageant leur temps entre divers

projets, ce qui entraîne des inefficiences et un manque de

cohésion. Le concept de "demi-personne" nuit à l'efficacité

des équipes, entraînant plus de confusion qu'un véritable sens

de la collaboration.

L'équipe soudée

Une équipe bien fonctionnelle se caractérise par de fortes

relations et une collaboration efficace entre ses membres.

Une équipe soudée se compose généralement d'un mélange

équilibré de programmeurs, de testeurs, d'analystes et d'un

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

chef de projet, avec une taille optimale d'environ douze

membres. Cette structure d'équipe favorise un environnement

où les membres complètent les compétences des autres,

facilitant le soutien mutuel et des performances élevées.

Structuration des projets

Contrairement à de nombreuses banques et compagnies

d'assurance qui créent des équipes pour des projets

spécifiques, les organisations qui réussissent construisent des

équipes autour de la structure soudée existante. Cela permet

aux équipes de gérer plusieurs projets simultanément et

d'adapter leur charge de travail en fonction de leurs forces

uniques.

Gestion de la vélocité de l'équipe

Les équipes fonctionnent avec une vélocité spécifique,

indiquant la quantité de travail qu'elles peuvent accomplir

dans un délai donné. En suivant cette mesure, la direction

peut prendre des décisions éclairées sur l'allocation des

projets et les priorités. La flexibilité des équipes soudées

permet des ajustements rapides du focus des projets lorsque

nécessaire, contrastant avec des équipes moins capables de

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

telles réallocations rapides.

Préoccupations des propriétaires de projets

Bien que les propriétaires de projets puissent ressentir une

perte de contrôle lorsque les ressources se déplacent

fréquemment entre les projets, ce modèle assure une plus

grande réactivité aux besoins de l'entreprise. Il permet des

ajustements rapides de priorisation basés sur les objectifs

organisationnels sans les contraintes de la formation et de la

dissolution d'équipes.

Conclusion

Le processus de construction d'une équipe cohésive est plus

complexe et précieux que la simple gestion des projets.

Maintenir des équipes stables qui poursuivent leur travail

d'un projet à l'autre améliore leur capacité à délivrer des

résultats efficacement à travers de multiples initiatives.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 35 Résumé : 14 Mentorat,
Apprentissages, et Artisanat

MENTORAT, APPRENTISSAGE ET ARTISANAT

Introduction à la Déception dans l'Éducation en
Informatique

- Robert C. Martin exprime sa déception face à la préparation

des diplômés en informatique pour des rôles de

programmation.

- De nombreux diplômés manquent d'expérience pratique en

code, malgré leurs connaissances théoriques.

Expériences de Mentorat

- Martin partage des anecdotes personnelles d'apprentissage à

travers un mentorat structuré et non structuré.

- Parmi ses premières expériences, il a travaillé avec un

Digi-Comp I et a appris l'algèbre booléenne à travers un

manuel.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

- Ses expériences au lycée avec l'ordinateur ECP-18

impliquaient l'observation des techniques de programmation.

- Le mentorat est souligné comme un élément crucial dans le

développement des compétences en programmation.

Besoin de Mentorat Structuré dans le
Développement Logiciel

- En contraste avec la profession médicale, qui exige un

mentorat rigoureux et une pratique supervisée.

- Dans le secteur logiciel, les jeunes diplômés sont souvent

plongés dans des rôles critiques sans formation de base

suffisante.

- Martin plaide pour un modèle d'apprentissage structuré afin

d'élever les compétences et les aptitudes des développeurs de

logiciels.

Modèle Proposé d'Apprentissage en Logiciel

-

Maîtres
 : Programmeurs expérimentés menant des projets techniques

et guidant des développeurs moins expérimentés.

-

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Compagnons
 : Programmeurs compétents acquérant de l'expérience et

apprenant le travail d'équipe sous supervision.

-

Apprentis/Stagiaires
 : Nouveaux diplômés étroitement mentorés, assistant

principalement les compagnons, avec un accent sur

l'apprentissage des principes et pratiques fondamentaux.

Importance de l'Enseignement Technique et des
Valeurs

- Insistance sur la nécessité que les aînés du domaine

transmettent les valeurs artisanales et les compétences

techniques.

- Critique du manque de véritable mentorat technique dans de

nombreuses organisations aujourd'hui.

Définition de l'Artisanat dans le Logiciel

- L'artisanat est défini comme l'état d'esprit incarnant la

compétence, la qualité et le professionnalisme.

- Il s'acquiert par observation et interaction dans un cadre de

mentorat.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Convaincre les Autres d'Adopter l'Artisanat

- Encouragement à modéliser un comportement artisan dans

le but de promouvoir ses valeurs au travail.

Conclusion

- La responsabilité de développer des professionnels du

logiciel compétents incombe à l'industrie, et non uniquement

aux établissements d'enseignement.

- Appel à l'adoption de programmes de mentorat et

d'apprentissage structurés dans le développement logiciel.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 36 Résumé : A : Outils

OUTILS

Contexte Historique

En 1978, travaillant chez Teradyne, l'auteur décrit

l'environnement difficile de la gestion de 80KSLOC de code

assembleur M365 stocké sur bande. Le processus était

laborieux : les bandes ne se déplaçaient que dans une seule

direction, et les erreurs de lecture ou d'écriture entraînaient

souvent la répétition d'opérations longues, mettant en

évidence l'état primitif de la gestion des outils logiciels à

l'époque.

Contrôle de Version

Ce chapitre aborde l'évolution du contrôle de version, en

mettant l'accent sur l'utilisation d'outils open-source qui

répondent aux besoins des développeurs en raison de leur

rapidité et de leur efficacité. La limitation des systèmes de

contrôle de version « d'entreprise » est remarquée, suggérant

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

une approche hybride pour que les développeurs

maintiennent leur productivité sans provoquer de réactions

négatives de la part de l'entreprise.

Verrouillage Pessimiste vs. Optimiste

Le verrouillage pessimiste restreint l'édition simultanée mais

entraîne des inefficacités, car il peut empêcher d'autres de

faire des changements nécessaires. Les outils modernes

permettent une gestion plus flexible des mises à jour

concurrentes grâce à des méthodes de fusion, réduisant ainsi

le besoin de vérifications de fichiers individuelles.

Systèmes de Contrôle de Version Modernes

Le texte contraste les outils plus anciens comme CVS et

SVN avec les nouveaux systèmes distribués comme git. Git

permet la création et la fusion de branches spontanées,

changeant radicalement la dynamique de collaboration en

programmation et l'efficacité du flux de travail.

IDE / Éditeur

La discussion se tourne vers les éditeurs de développement et

Installer l'application Bookey pour débloquer le
texte complet et l'audio

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 37 Résumé : Index

Résumé du Chapitre 37 de "CODER
PROPREMENT" par Robert C. Martin

Tests d'Acceptation

- Définition : Les tests d'acceptation sont essentiels dans le

développement logiciel, servant à valider les exigences et à

garantir que le produit répond aux objectifs commerciaux.

- Rôle des Développeurs : Les développeurs jouent un rôle

clé dans l'écriture et l'exécution des tests d'acceptation,

nécessitant collaboration et communication.

- Automatisation : Les tests d'acceptation automatisés

simplifient le processus de développement et s'intègrent bien

aux pratiques d'intégration continue.

Rôles Adverses

- La dynamique des rôles adverses au sein des équipes peut

aboutir à des conflits et freiner les progrès, soulignant le

besoin d'une communication et d'une collaboration efficaces.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Engagement

- Comprendre l'engagement dans le développement logiciel

implique de reconnaître son importance pour la cohésion de

l'équipe et le succès du projet, tout en gérant les attentes et la

discipline.

Communication

- Une communication claire est essentielle, surtout en ce qui

concerne les exigences et les changements dans les projets.

Les interprétations erronées peuvent entraîner de l'ambiguïté

et des échecs de projet.

Discipline en Crise

- En période de crise, l'importance de maintenir la discipline

ne peut être sous-estimée, car des décisions précipitées

peuvent introduire des défauts et du chaos.

Meilleures Pratiques de Développement

- L'adoption de pratiques comme le développement en

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

binôme et le mentorat favorise le partage des connaissances

et le développement des compétences, essentiels pour

améliorer la dynamique de l'équipe.

Estimation

- Les tâches et les estimations de projet doivent prendre en

compte l'incertitude et utiliser des techniques telles que le

Planning Poker pour atténuer l'anxiété liée à l'estimation.

Assurance Qualité

- L'assurance qualité automatisée contraste avec les méthodes

traditionnelles en identifiant activement les défauts tout au

long du cycle de développement, contribuant à une meilleure

qualité de code.

Gestion du Temps

- Une gestion efficace du temps nécessite de prendre

conscience des priorités, des tâches en cours et d'éviter des

pièges comme la précipitation ou la complaisance.

Stratégies de Test

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

- Le chapitre décrit diverses stratégies de test, mettant

l'accent sur une approche équilibrée qui intègre des tests

unitaires, des tests d'intégration et des tests d'acceptation,

tout en garantissant une couverture complète.

Éthique de Travail

- Les développeurs doivent cultiver une forte éthique de

travail, ancrée dans un apprentissage continu et un

engagement à améliorer leur métier et la qualité globale de la

livraison de produits.

En adhérant à ces principes, les équipes peuvent améliorer

leur productivité, minimiser les risques et favoriser un

environnement de travail sain qui priorise la qualité et la

collaboration.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour téléchargerScanner pour télécharger

Exemple

Point clé:Les tests d'acceptation automatisés sont

cruciaux pour garantir la qualité du produit et

s'aligner sur les objectifs commerciaux.

Exemple:Imaginez que vous faites partie d'une équipe

de développement travaillant sur une nouvelle

fonctionnalité pour une application mobile. Alors que

votre chef d'équipe vous attribue la tâche, vous réalisez

que les exigences ne sont pas tout à fait claires. Au lieu

d'attendre que des malentendus surgissent plus tard,

vous prenez l'initiative d'écrire des tests d'acceptation.

Ces tests définissent ce que la fonctionnalité doit faire,

servant de contrat entre les parties prenantes et votre

équipe. Vous collaborez étroitement avec un ingénieur

QA, discutant des cas limites potentiels et vous assurant

que les tests les couvrent. Au fur et à mesure que vous

automatisez ces tests, votre équipe peut les intégrer en

toute confiance dans votre pipeline d'intégration

continue, permettant à chaque commit d'être validé par

rapport à ces critères. Cette approche proactive non

seulement fait gagner du temps à long terme, mais

favorise également une culture où la qualité est la

responsabilité de tous, alignant le produit final plus

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

étroitement sur les objectifs commerciaux.

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Meilleures phrases du CODER
PROPREMENT par Robert C. Martin
avec numéros de page
Voir sur le site de Bookey et générer de belles images de citation

Chapitre 1 | Phrases des pages -63

1.Prendre le temps de choisir de bons noms permet

d'économiser encore plus de temps par la suite.

Prenez donc soin de vos noms et changez-les

lorsque vous en trouvez de meilleurs.

2.Si un nom nécessite un commentaire, alors le nom ne

révèle pas son intention.

3.Le pouvoir de choisir de bons noms ne saurait être

sous-estimé.

4.Les programmeurs doivent éviter de laisser de faux indices

qui obscurcissent le sens du code.

5.Les professionnels utilisent leurs compétences pour le bien

et écrivent du code que les autres peuvent comprendre.

6.Ne soyez pas trop astucieux avec les noms ; privilégiez la

clarté plutôt que la valeur divertissante.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://www.bookey.app/fr/book/coder-proprement/quote
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 2 | Phrases des pages 64-85

1.Les fonctions ne devraient faire qu'une seule

chose. Elles devraient bien le faire. Elles devraient

le faire uniquement.

2.Petites ! La première règle des fonctions est qu'elles

doivent être petites. La deuxième règle des fonctions est

qu'elles doivent être plus petites que ça.

3.Le code devrait se lire comme un récit descendant. Nous

voulons que chaque fonction soit suivie de celles du niveau

d'abstraction suivant afin que nous puissions lire le

programme, descendant un niveau d'abstraction à la fois en

descendant la liste des fonctions.

4.Utilisez des noms descriptifs. Il est difficile de surestimer

la valeur de bons noms.

5.Préférez les exceptions au retour de codes d'erreur.

6.Ne vous répétez pas (DRY).

Chapitre 3 | Phrases des pages 86-107

1.Ne commentez pas un mauvais code, réécrivez-le.”

—Brian W. Kernighan et P. J. Plaugher

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

2.Un code clair et expressif avec peu de commentaires est de

loin supérieur à un code encombré et complexe avec de

nombreux commentaires.

3.L'utilisation appropriée des commentaires est de compenser

notre incapacité à nous exprimer correctement dans le code.

4.Des commentaires incorrects sont bien pires que pas de

commentaires du tout.

5.Chaque fois que vous vous exprimez dans le code, vous

devriez vous féliciter. Chaque fois que vous écrivez un

commentaire, vous devriez grimacer et ressentir l'échec de

votre capacité d'expression.

6.La vérité ne peut être trouvée qu'à un seul endroit : le code.

Seul le code peut vraiment vous dire ce qu'il fait.

7.De bons commentaires sont informatifs et nécessaires, mais

ils restent un compromis face à l'incapacité du code à

s'exprimer adéquatement.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 4 | Phrases des pages 108-125

1.Si au lieu de cela ils voient une masse de code en

désordre qui semble avoir été écrite par une bande

de marins ivres, ils sont alors susceptibles de

conclure que la même inattention aux détails

imprègne chaque autre aspect du projet.

2.Le formatage du code est important. Il est trop important à

ignorer et trop important à traiter avec religiosité.

3.La fonctionnalité que vous créez aujourd'hui a de bonnes

chances de changer dans la prochaine version, mais la

lisibilité de votre code aura un effet profond sur tous les

changements qui seront jamais apportés.

4.Les petits fichiers sont généralement plus faciles à

comprendre que les grands fichiers.

5.Vous devriez vous assurer que votre code est bien formaté.

6.La dernière chose que nous voulons faire est d'ajouter plus

de complexité au code source en l'écrivant dans un

méli-mélo de styles individuels différents.

7.Nous devons avoir un style cohérent et fluide. Le lecteur

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

doit être capable de faire confiance au fait que les gestes de

formatage qu’il a vus dans un fichier source signifieront la

même chose dans d'autres.

Chapitre 5 | Phrases des pages -135

1.Nous ne voulons pas que qui que ce soit d'autre

dépende d'eux. Nous voulons garder la liberté de

changer leur type ou leur implémentation selon

l'humeur ou l'impulsion.

2.Cacher l'implémentation concerne les abstractions ! Une

classe ne se contente pas de rendre ses variables accessibles

par des getters et des setters. Elle expose plutôt des

interfaces abstraites qui permettent à ses utilisateurs de

manipuler l'essence des données, sans avoir à connaître son

implémentation.

3.Les choses qui sont difficiles pour l'OO sont faciles pour

les procédures, et les choses qui sont difficiles pour les

procédures sont faciles pour l'OO !

4.La loi de Demeter dit qu'une méthode f d'une classe C ne

doit appeler que les méthodes de : C, un objet créé par f, un

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

objet passé en tant qu'argument à f, un objet détenu dans

une variable d'instance de C.

5.La pire option est d'ajouter aveuglément des getters et des

setters. Une réflexion sérieuse doit être donnée à la

meilleure manière de représenter les données qu'un objet

contient.

6.Les bons développeurs de logiciels comprennent ces enjeux

sans préjugés et choisissent l'approche qui convient le

mieux à la tâche à accomplir.

Chapitre 6 | Phrases des pages 136-145

1.La gestion des erreurs est importante, mais si elle

obscurcit la logique, c'est une erreur.

2.Lorsque vous exécutez du code dans la partie try d'une

déclaration try-catch-finally, vous indiquez que l'exécution

peut s'interrompre à tout moment et reprendre ensuite au

niveau du catch.

3.Définissez les classes d'exception en fonction des besoins

de l’appelant.

4.Ne renvoyez pas des valeurs nulles

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

5.La majeure partie de votre code commencera à ressembler

à un algorithme propre et dépouillé.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 7 | Phrases des pages 146-153

1.L'interface à la frontière (Map) est cachée. Elle

peut évoluer avec très peu d'impact sur le reste de

l'application.

2.Les tests d'apprentissage ne coûtent finalement rien. Nous

devions de toute façon apprendre l'API, et écrire ces tests

était un moyen simple et isolé d'acquérir cette

connaissance.

3.De bonnes conceptions logicielles accueillent le

changement sans investissements ni retouches énormes.

4.Il vaut mieux dépendre de quelque chose que vous

contrôlez plutôt que de quelque chose que vous ne

contrôlez pas, de peur que cela ne finisse par vous

contrôler.

5.Nous devrions éviter de laisser trop de notre code connaître

les détails particuliers des tiers.

Chapitre 8 | Phrases des pages 154-167

1.Le code de test est aussi important que le code de

production. Ce n'est pas un citoyen de deuxième

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

classe. Cela nécessite réflexion, conception et soin.

Il doit être aussi propre que le code de production.

2.Si vous ne gardez pas vos tests propres, vous les perdrez.

Et sans eux, vous perdez ce qui maintient votre code de

production flexible. Oui, vous avez bien lu. Ce sont les

tests unitaires qui maintiennent notre code flexible,

maintenable et réutilisable.

3.La morale de cette histoire est simple : le code de test est

aussi important que le code de production.

4.Oui, nous avons parcouru un long chemin ; mais il nous

reste encore du chemin à faire.

5.Gardez vos tests constamment propres. Efforcez-vous de

les rendre expressifs et succincts. Inventez des API de test

qui agissent comme un langage spécifique au domaine qui

vous aide à écrire les tests.

Chapitre 9 | Phrases des pages 168-185

1.Les classes doivent avoir une seule responsabilité -

une seule raison de changer.

2.Nous voulons que nos systèmes soient composés de petites

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

classes, et non de quelques grandes.

3.Assouplir l'encapsulation est toujours un dernier recours.

4.Le nom d'une classe doit décrire quelles responsabilités elle

remplit.

5.Si nous ne pouvons pas dériver un nom concis pour une

classe, alors elle est probablement trop grande.

6.Faire fonctionner un logiciel et faire un logiciel propre sont

deux activités très différentes.

7.Notre logique Sql restructurée représente le meilleur de

tous les mondes.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 10 | Phrases des pages 186-203

1.La complexité tue. Elle épuise les développeurs,

rendant la planification, la construction et les tests

des produits difficiles." —Ray Ozzie, CTO,

Microsoft Corporation

2.La séparation des préoccupations est l'une des techniques

de conception les plus anciennes et les plus importantes

dans notre métier.

3.C'est un mythe que nous puissions obtenir les systèmes

'justes du premier coup.' Au lieu de cela, nous devrions

mettre en œuvre uniquement les histoires d'aujourd'hui, puis

refactoriser et étendre le système pour implémenter de

nouvelles histoires demain.

4.Une architecture système optimale consiste en des

domaines de préoccupation modularisés, chacun étant

implémenté avec des objets Java classiques (ou d'autres

objets).

5.Nous oublions souvent qu'il est également préférable de

reporter les décisions jusqu'au dernier moment possible.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Cela n'est ni paresseux ni irresponsable ; cela nous permet

de prendre des choix éclairés avec les meilleures

informations possibles.

6.Si l'agilité est compromise, la productivité en souffre et les

avantages du TDD sont perdus.

Chapitre 11 | Phrases des pages -209

1.Un système peut avoir une conception parfaite sur

le papier, mais s'il n'y a pas de moyen simple de

vérifier que le système fonctionne réellement

comme prévu, alors tout cet effort sur papier est

discutable.

2.Écrire des tests conduit à de meilleures conceptions.

3.La duplication est l'ennemi principal d'un système bien

conçu.

4.Plus l'auteur peut rendre le code clair, moins les autres

passeront de temps à le comprendre.

5.Le soin est une ressource précieuse.

6.Un design est 'simple' s'il respecte ces règles : Passe tous

les tests, Ne contient pas de duplication, Exprime

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

l'intention du programmeur, Minimise le nombre de classes

et de méthodes.

Chapitre 12 | Phrases des pages 210-225

1.Écrire des programmes concurrentiels propres est

difficile, très difficile.

2.La concurrency est une stratégie de découplage. Elle nous

aide à dissocier ce qui est fait de quand c'est fait.

3.Une concurrence correcte est complexe, même pour des

problèmes simples.

4.Écrire un système destiné à rester opérationnel

éternellement est différent d'écrire quelque chose qui

fonctionne un moment puis se ferme proprement.

5.Traitez les échecs sporadiques comme des problèmes

potentiels de multi-threading.

6.Si vous adoptez une approche propre, vos chances de

réussir augmentent considérablement.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 13 | Phrases des pages 226-283

1.Pour coder proprement, il faut d'abord écrire du

code brouillon et ensuite le nettoyer.

2.La plupart des programmeurs débutants... croient que

l'objectif principal est de faire fonctionner le programme.

Une fois qu'il est 'fonctionnel', ils passent à la tâche

suivante, laissant le programme 'fonctionnel' dans l'état

dans lequel ils l'ont finalement fait 'marcher'. La plupart des

programmeurs expérimentés savent que c'est un suicide

professionnel.

3.Écrire des compositions propres... est une question de

perfectionnement successif.

4.Rien n'a un effet dégradant plus profond et durable sur un

projet de développement que du mauvais code.

5.Garder le code propre est relativement facile... Si vous avez

mis le désordre dans un module le matin, il est facile de le

nettoyer l'après-midi.

Chapitre 14 | Phrases des pages 284-299

1.La refactorisation est un processus itératif rempli

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

d'essais et d'erreurs, convergeant inévitablement

vers quelque chose que nous considérons digne

d'un professionnel.

2.Même si les auteurs ont laissé ce module en très bon état, la

règle du Boy Scout nous dit que nous devrions le laisser

plus propre que nous ne l'avons trouvé.

3.Il y a quelques longues expressions et des +1 étranges et

autres. Mais dans l'ensemble, ce module est plutôt bon.

4.Chacun d'entre nous a la responsabilité de laisser le code un

peu meilleur que nous ne l'avons trouvé.

Chapitre 15 | Phrases des pages 300-317

1.C'est seulement à travers des critiques comme

celles-ci que nous apprendrons. Les médecins le

font. Les pilotes le font. Les avocats le font. Et

nous, les programmeurs, devons aussi apprendre à

le faire.

2.Ce n'est pas une activité malveillante. Je ne pense pas non

plus que je sois tellement meilleur que David que j'ai le

droit de porter un jugement sur son code.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

3.En effet, cette classe parle de jours, plutôt que de temps.

J'ai envisagé de l'appeler Jour, mais ce nom est également

beaucoup utilisé ailleurs. Au final, j'ai choisi DateJournée

comme le meilleur compromis.

4.Nous avons maintenant des outils de contrôle de version

qui font cela pour nous. Cette histoire devrait être

supprimée.

5.Le schéma de l'échec en examinant quels cas de test sont

commentés. Ce schéma est révélateur.

6.Il est intéressant de noter que cette fonction a été l'objet

d'une réparation antérieure. L'historique des modifications

montre que des 'bugs' ont été corrigés...

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 16 | Phrases des pages 318-349

1.Informations inappropriées. Il est inapproprié

qu'un commentaire contienne des informations qui

seraient mieux placées dans un autre type de

système.

2.Les commentaires devraient être réservés aux notes

techniques concernant le code et la conception.

3.Le code commenté est une véritable abomination.

4.Les fonctions devraient avoir un petit nombre d'arguments.

5.Chaque fois que vous voyez une duplication dans le code,

cela représente une occasion manquée d'abstraction.

6.Une bonne conception logicielle nécessite que nous

séparions les concepts à différents niveaux et que nous les

placions dans différents conteneurs.

7.Moins une classe a de méthodes, mieux c'est.

8.Chaque fonction fait une seule chose.

9.Choisissez des noms descriptifs.

10.Ne négligez pas les tests triviaux.

Chapitre 17 | Phrases des pages -381

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

1.Il y a deux possibilités : I/O—utiliser une socket, se

connecter à une base de données, attendre

l'échange de mémoire virtuelle, etc.

Processeur—calculs numériques, traitement

d'expressions régulières, collecte des déchets, etc.

2.Si le code est lié au processeur, du matériel de traitement

supplémentaire peut améliorer le débit, faisant passer notre

test. Mais il n'y a qu'un nombre limité de cycles CPU

disponibles, donc ajouter des threads à un problème lié au

processeur ne le fera pas aller plus vite.

3.Pour garder les systèmes concurrents propres, la gestion

des threads devrait se limiter à quelques endroits bien

contrôlés. De plus, tout code qui gère des threads ne devrait

faire autre chose que de la gestion de threads.

4.Interblocage. Le système ne se rétablit jamais. Cela peut

sembler une situation peu probable, mais qui veut d'un

système qui se fige complètement toutes les deux semaines

?

5.Comment pouvons-nous écrire un test pour démontrer que

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

le code suivant est défectueux ?

Chapitre 18 | Phrases des pages 382-441

1.Pourquoi ne pas simplement utiliser java.util.Date

? Nous le ferons, lorsque cela a du sens. Parfois,

java.util.Date peut être *trop* précis - il

représente un instant dans le temps, exact à

1/1000ème de seconde (avec la date elle-même

dépendant du fuseau horaire). Parfois, nous

voulons juste représenter un jour particulier (par

exemple, le 21 janvier 2015) sans nous préoccuper

de l'heure de la journée, du fuseau horaire, ou de

quoi que ce soit d'autre. C'est pour cela que nous

avons défini SerialDate.

2.Une classe abstraite qui définit nos exigences pour

manipuler des dates, sans fixer une mise en œuvre

particulière.

3.Cette bibliothèque est distribuée dans l'espoir qu'elle sera

utile, mais SANS AUCUNE GARANTIE ; sans même la

garantie implicite de COMMERCIALISATION ou

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

D'ADAPTATION À UN USAGE PARTICULIER.

4.Exigence 1 : correspondre au moins à ce que fait Excel

pour les dates ; Exigence 2 : la classe est immuable ;

5.Vous pouvez appeler getInstance() pour obtenir une

sous-classe concrète de SerialDate, sans vous préoccuper

de la mise en œuvre exacte.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 19 | Phrases des pages 442-443

1.‘La seule façon d'aller vite est d'aller bien.’

2.‘Le code est lu bien plus souvent qu'il n'est écrit.’

3.‘On ne peut pas écrire un bon code sans un bon design.’

4.‘La simplicité est l'âme de l'efficacité.’

5.‘Apprendre à écrire un bon code est un voyage qui dure

toute une vie.’

Chapitre 20 | Phrases des pages -465

1.L'art de CODER PROPREMENT est une

question de négociation, et il commence par un

design à la fois simple et expressif.

2.Le code est comme l'humour. Quand vous devez

l'expliquer, c'est mauvais.

3.La règle du scout : Toujours laisser le campement plus

propre que vous ne l'avez trouvé.

4.Le code propre se lit comme une prose bien écrite.

5.Un design simple permet aux développeurs de

communiquer efficacement et facilite les changements.

Chapitre 21 | Phrases des pages 492-497

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

1.Le professionnalisme est quelque chose dont notre

métier a grandement besoin.

2.Vous voyez, quand j'ai obtenu mon premier emploi en tant

que programmeur, le mot professionnel était le dernier que

vous auriez utilisé pour me décrire.

3.J'ai appris... que jamais on ne quitte un emploi sans en

avoir un nouveau, et qu'on doit toujours partir calmement,

sereinement, et seul.

4.Pensez à ce livre comme à un catalogue de mes propres

erreurs, un registre de mes propres crimes, et un ensemble

de lignes directrices pour vous éviter de marcher dans mes

premières traces.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 22 | Phrases des pages 498-513

1.Le professionnalisme est un terme chargé de

connotations. C'est certes un insigne de fierté, mais

c'est aussi un marqueur de responsabilité et de

redevabilité.

2.Le professionnel écrirait un chèque de 10 000 $ à

l'entreprise ! Oui, ça fait un peu différent quand il s'agit de

votre propre argent, non ?

3.D'abord, ne pas nuire. Clairement, nous voulons que notre

logiciel fonctionne.

4.Le vrai professionnel sait que livrer de la fonction au

détriment de la structure est une tâche futile.

5.Votre carrière est votre responsabilité. Ce n'est pas à votre

employeur de s'assurer que vous êtes attractif sur le

marché.

6.Si vous voulez être un professionnel, vous devez connaître

une part importante [de notre domaine] et constamment

augmenter cette part.

7.Le meilleur moyen d'apprendre est d'enseigner.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

8.Un professionnel a confiance en ses capacités et prend des

risques audacieux et calculés en se basant sur cette

confiance.

Chapitre 23 | Phrases des pages 514-535

1.Fais; ou ne fais pas. Il n'y a pas d'essai.” — Yoda

2.Les professionnels disent la vérité aux puissants. Les

professionnels ont le courage de dire non à leurs

responsables.

3.Un bon joueur d'équipe n'est pas quelqu'un qui dit oui tout

le temps.

4.La seule façon de faire votre travail, à ce moment-là, est de

dire 'Non, c'est impossible.'

5.Plus les enjeux sont élevés, plus le non devient précieux.

6.Avez-vous un réservoir d'énergie supplémentaire que vous

retenez ?

7.En promettant d'essayer, vous promettez de changer vos

plans.

Chapitre 24 | Phrases des pages 536-547

1.Dire. Signifier. Faire. Il y a trois étapes pour

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

s'engager. 1. Vous dites que vous le ferez. 2. Vous le

pensez vraiment. 3. Vous le faites vraiment.

2.Si vous ne trouvez pas ces petits mots magiques, il y a de

fortes chances que nous ne voulions pas ce que nous

disons, ou que nous ne croyions pas que cela soit réalisable.

3.Vous vous sentirez mal de ne pas l'avoir fait. Vous vous

sentirez mal à l'aise de dire à quelqu'un que vous ne l'avez

pas fait (si cette personne a entendu votre promesse).

Effrayant, n'est-ce pas ?

4.L'ingrédient secret pour reconnaître un réel engagement est

de chercher des phrases qui ressemblent à ceci : Je vais . . .

d'ici . . .

5.Les professionnels ne sont pas tenus de dire oui à tout ce

qu'on leur demande. Cependant, ils devraient s'efforcer de

trouver des moyens créatifs pour rendre le 'oui' possible.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 25 | Phrases des pages 548-567

1.Une des choses qui m'a aidé à avoir confiance,

c'est que je pouvais sentir quand je faisais une

erreur.

2.Quand vous ne pouvez pas concentrer et vous focaliser

suffisamment, le code que vous écrivez sera faux.

3.La morale de cette histoire est : Ne faites pas de code

quand vous êtes fatigué.

4.La créativité et l'intelligence sont des états d'esprit

éphémères.

5.La programmation est difficile. Plus vous êtes jeune, moins

vous le croyez.

6.Il est peu professionnel de rester bloqué quand l'aide est

facilement accessible.

7.Une livraison fausse est peut-être le pire de tous les

comportements non professionnels dans lesquels un

programmeur peut se laisser aller.

8.Ne laissez personne d'autre avoir de l'espoir.

Chapitre 26 | Phrases des pages 568-575

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

1.Le verdict est tombé ! La controverse est terminée.

GOTO est nuisible. Et le TDD fonctionne.

2.Comment pouvez-vous vous considérer comme un

professionnel si vous ne savez pas que tout votre code

fonctionne ?

3.Si vous adoptez le TDD comme discipline professionnelle,

alors vous écrirez des dizaines de tests chaque jour, des

centaines de tests chaque semaine et des milliers de tests

chaque année.

4.Lorsque les programmeurs n'ont plus peur de nettoyer, ils

nettoient ! Et un code propre est plus facile à comprendre,

plus facile à changer et plus facile à étendre.

5.Chacun des tests unitaires que vous écrivez lorsque vous

suivez les trois lois est un exemple, écrit dans le code,

décrivant comment le système doit être utilisé.

6.La conclusion de tout cela est que le TDD est l'option

professionnelle. C'est une discipline qui améliore la

certitude, le courage, la réduction des défauts, la

documentation et le design.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 27 | Phrases des pages 576-585

1.Tous les professionnels pratiquent leur art en

s'engageant dans des exercices pour affiner leurs

compétences.

2.La nature des déclarations n’a pas changé depuis tout ce

temps.

3.La rapidité dépend de la pratique.

4.L'objectif est d'entraîner votre esprit et votre corps à réagir

dans une situation de combat particulière.

5.Il est remarquable combien vous pouvez apprendre de ces

séances.

6.Pratiquer, c'est ce que vous faites quand vous n'êtes pas

payé.

7.De plus, ils pratiquent sur leur temps libre car ils réalisent

que c'est leur responsabilité — et non celle de leur

employeur — de garder leurs compétences aiguisées.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 28 | Phrases des pages -603

1.Le rôle du développeur professionnel est un rôle de

communication ainsi qu'un rôle de développement.

2.Cela nous a pris toute une journée. Il décrivait une

fonctionnalité et je l'implémentais sous ses yeux.

3.Le problème, c'est que les choses apparaissent

différemment sur papier que dans un système fonctionnel.

4.Plus vous précisez vos exigences, moins elles deviennent

pertinentes au fur et à mesure que le système est mis en

œuvre.

5.Il est de la responsabilité des développeurs professionnels

(et des parties prenantes) de s’assurer que toute ambiguïté

est éliminée des exigences.

6.Les développeurs professionnels ne détaillent une exigence

que lorsqu'ils sont sur le point de la développer.

7.Lorsqu'un développeur dit qu'il a terminé une tâche, que

signifie cela ?

8.Les tests d'acceptation devraient toujours être automatisés.

9.Écrire ces tests est simplement le travail de spécification du

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

système.

10.Le coût de l'automatisation des tests d'acceptation est si

faible par rapport au coût de l'exécution des plans de test

manuel qu'il n'a aucun sens économique d'écrire des

scripts pour que des humains les exécutent.

Chapitre 29 | Phrases des pages 604-611

1.Les développeurs professionnels testent leur code.

2.Ce que chaque équipe de développement professionnelle a

besoin, c'est d'une bonne stratégie de test.

3.L'objectif du groupe de développement devrait être que

l'assurance qualité ne trouve rien de défectueux.

4.L'assurance qualité et le développement devraient travailler

ensemble pour garantir la qualité du système.

5.L'intention de ces tests est de spécifier le système au niveau

le plus bas.

6.Le comportement correct du code et des composants

sous-jacents a déjà été vérifié par les couches inférieures de

la pyramide.

7.L'objectif est de garantir que le système se comporte bien

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

lors d'une opération humaine et de découvrir aussi

créativement que possible autant de 'particularités' que

possible.

Chapitre 30 | Phrases des pages 612-625

1.Huit heures, c'est une période de temps

remarquablement courte. C'est seulement 480

minutes ou 28 800 secondes.

2.Vous n'avez pas à assister à chaque réunion à laquelle vous

êtes invité.

3.Quand la réunion devient ennuyeuse, partez.

4.La concentration est une ressource rare, un peu comme la

manne.

5.Quand vous êtes dans une situation difficile, arrêtez de

creuser.

6.Il n'y a pas de spectacle plus triste qu'une équipe de

développeurs de logiciels s'enlisant dans un marécage de

plus en plus profond.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 31 | Phrases des pages 626-639

1.L'estimation est l'une des activités les plus simples,

mais aussi les plus effrayantes auxquelles les

professionnels du logiciel sont confrontés.

2.Les entreprises aiment considérer les estimations comme

des engagements. Les développeurs aiment voir les

estimations comme des suppositions.

3.Un engagement est quelque chose que vous devez réaliser.

Une estimation est une supposition.

4.Une estimation est une distribution.

5.La ressource d'estimation la plus importante que vous ayez,

ce sont les personnes qui vous entourent.

Chapitre 32 | Phrases des pages 640-647

1.Le développeur professionnel reste calme et décisif

sous pression.

2.Tout a changé ce jour-là. J'ai arrêté les heures folles. J'ai

arrêté ce mode de vie stressant. J'ai cessé de lancer des

stylos et d'écrire des fonctions C de 3 000 lignes.

3.La meilleure façon de rester calme sous pression est

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

d’éviter les situations qui créent cette pression.

4.Vous savez ce que vous croyez en vous observant dans une

crise. Si, en période de crise, vous suivez vos disciplines,

alors vous croyez vraiment en ces disciplines.

5.Résistez à cette tentation à tout prix. Se précipiter ne fera

que vous enfoncer davantage dans le trou.

6.Le secret pour gérer la pression est de l’éviter quand c’est

possible et d’y faire face quand ce n’est pas le cas.

Chapitre 33 | Phrases des pages 648-657

1.La plupart des logiciels sont créés par des équipes.

Les équipes sont les plus efficaces lorsque les

membres collaborent de manière professionnelle.

2.La seule fois où j'ai été licencié d'un emploi de

programmation, c'était en 1976.

3.C'est bien d'être passionné par ce que nous faisons. Mais il

est également important de garder un œil sur les objectifs de

ceux qui vous paient.

4.La pire chose qu'un programmeur professionnel puisse

faire est de s'enfermer dans une tombe de technologie

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

pendant que l'entreprise s'effondre autour de lui.

5.Les développeurs professionnels ne empêchent pas les

autres de travailler dans le code. Ils ne construisent pas de

murs de propriété autour du code.

6.Deux têtes valent mieux qu'une. Mais si le travail en

binôme est la manière la plus efficace de résoudre un

problème en cas d'urgence, pourquoi ne serait-ce pas la

manière la plus efficace de résoudre un problème tout court

?

7.Peut-être que nous ne sommes pas entrés dans la

programmation pour travailler avec des gens. Tant pis pour

nous.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 34 | Phrases des pages 658-663

1.Il n'existe pas de personne à moitié.

2.Il y a quelque chose de vraiment magique dans une équipe

bien rodée.

3.Il faut du temps à une équipe comme celle-ci pour travailler

sur ses différences, apprendre à se connaître et vraiment

s'harmoniser.

4.L'entreprise ne devrait pas avoir les mains liées par la

difficulté artificielle de former et de dissoudre des équipes.

5.L'objectif en formant une équipe est de lui donner

suffisamment de temps pour s'harmoniser, puis de la

maintenir ensemble comme un moteur pour réaliser de

nombreux projets.

Chapitre 35 | Phrases des pages 664-677

1.J'ai constamment été déçu par la qualité des

diplômés en informatique.

2.Même les meilleurs programmes de diplôme en

informatique ne préparent généralement pas le jeune

diplômé à ce qu'il trouvera dans l'industrie.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

3.Je n'ai pas tout découvert par moi-même. J'ai été mentoré.

4.Il aurait été bien mieux pour moi si j'avais eu un véritable

mentor, quelqu'un pour m'enseigner les ficelles du métier.

5.Que font les médecins ? Pensez-vous que les hôpitaux

embauchent des diplômés en médecine et les jettent dans

les salles d'opération pour faire des opérations à cœur

ouvert dès leur premier jour de travail ?

6.L'artisanat est un mème qui contient des valeurs, des

disciplines, des techniques, des attitudes et des réponses.

Chapitre 36 | Phrases des pages 678-695

1.Aujourd'hui, les développeurs de logiciels

disposent d'un large éventail d'outils parmi

lesquels choisir. La plupart ne valent pas la peine

d'être utilisés, mais il y en a quelques-uns avec

lesquels chaque développeur de logiciels doit être

familiarisé.

2.S'il y a de nouvelles épingles sur le tableau, nous retirerions

nos épingles et remettrions notre bande de travail à la

personne dont les épingles étaient encore sur le tableau. Ils

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

devraient faire la fusion.

3.En aucun cas, l'échec ne doit persister pendant un jour ou

plus.

4.Le but est que vous devez être en mesure de dire que tous

les tests ont réussi rapidement et sans ambiguïté.

5.Le problème, c'est le détail. Les programmeurs sont des

gestionnaires de détails. C'est ce que nous faisons.

6.La courbe d'apprentissage est élevée, et le temps de

configuration du projet n'est pas négligeable. Ces outils ne

sont pas légers.

7.Il se peut que votre entreprise ait investi une petite fortune

dans un système de contrôle de version 'entreprise'. Si c'est

le cas, je vous présente mes condoléances.

8.Les outils examinent les deux fichiers différents ainsi que

l'ancêtre de ces deux fichiers, puis ils appliquent plusieurs

stratégies pour déterminer comment intégrer les

changements concurrents.

9.Vous pouvez dire si vous êtes prêt à enregistrer du code en

fonction de si tous les tests automatisés passent.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

10.En fin de compte, tout tourne autour des détails, et ce sont

les programmeurs qui gèrent ces détails.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 37 | Phrases des pages -703

1.La discipline du codage implique un engagement

envers la qualité, la clarté et la simplicité. Adoptez

l'art de l'artisanat, car un excellent code naît d'une

dévotion passionnée.

2.L'éthique de travail va au-delà de la simple exécution de

ses tâches ; c'est un engagement envers l'amélioration

continue et envers ceux qui vous entourent.

3.La communication est essentielle. Sans elle, le processus de

développement peut plonger dans le chaos, et les

malentendus peuvent mener à l'échec.

4.Adoptez la peurlessness dans votre travail, surtout quand il

s'agit de remettre en question les idées et pratiques

existantes. L'innovation découle de la remise en question

du statu quo.

5.Un excellent logiciel se construit en collaboration. La

dynamique d'équipe favorise la créativité, l'insight et la

responsabilité partagée.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

CODER PROPREMENT Questions
Voir sur le site de Bookey

Chapitre 1 | 2 Noms Significatifs| Questions et
réponses

1.Question

Pourquoi les noms significatifs sont-ils importants dans le

code ?
Réponse:Les noms significatifs sont cruciaux car ils

améliorent la lisibilité et la compréhension du code.

Ils doivent transmettre l'objectif et la fonctionnalité

de la variable, de la fonction ou de la classe, rendant

ainsi plus facile pour les développeurs de maintenir

et de modifier le code sans avoir à déchiffrer la

logique derrière des noms ambigus.

2.Question

Quelle est la règle concernant les noms révélant

l'intention ?
Réponse:La règle est d'utiliser des noms qui révèlent

l'intention de la variable, de la fonction ou de la classe. Un

bon nom doit aider à répondre à des questions clés comme

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://www.bookey.app/fr/book/coder-proprement/qa
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

pourquoi il existe, ce qu'il fait et comment il est utilisé. Si un

nom nécessite un commentaire pour l'expliquer, alors le nom

ne fournit pas suffisamment de contexte.

3.Question

Comment éviter la désinformation peut-il aider en

programmation ?
Réponse:Éviter la désinformation implique d'utiliser des

noms qui représentent avec précision leur but et leur

contexte, empêchant ainsi toute confusion. Par exemple,

utiliser un nom clair comme 'jeuPlateau' au lieu de 'laListe'

rend le code explicite et permet à quiconque lisant le code de

comprendre immédiatement ce qui est référencé.

4.Question

Que devez-vous considérer lors de la nomination des

variables pour éviter la confusion ?
Réponse:Pour éviter la confusion, il est essentiel de choisir

des noms distincts et significatifs qui ne se ressemblent pas

(par exemple, éviter 'l' et '1' ou 'O' et '0'). De plus, les noms

doivent être suffisamment clairs pour ne pas nécessiter de

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

traduction en une terminologie plus familière pour la

compréhension.

5.Question

Pourquoi les noms de variables d'une seule lettre

doivent-ils être évités en dehors des boucles ?
Réponse:Les noms d'une seule lettre peuvent être non

informatifs et créer de l'ambiguïté. Ils ne transmettent aucun

concept, rendant plus difficile pour d'autres développeurs (et

vous-même à l'avenir) de comprendre le code, car ils

nécessitent un mapping mental pour saisir ce que la variable

représente.

6.Question

Quelle est la signification des noms de classes par rapport

aux noms de méthodes ?
Réponse:Les noms de classes doivent être des noms ou des

phrases nominales qui représentent avec précision l'objet

modélisé, tandis que les noms de méthodes doivent être des

verbes ou des phrases verbales décrivant des actions. Cette

distinction aide à clarifier le rôle de chaque élément dans le

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

code, rendant l'ensemble plus intuitif.

7.Question

Comment le contexte influence-t-il les noms de variables ?
Réponse:Le contexte améliore considérablement la clarté des

noms de variables. Par exemple, utiliser des noms comme

'addrPrenom' fournit des indices contextuels que ces

variables font partie d'une structure d'adresse. Un contexte

approprié aide les lecteurs à saisir immédiatement les

relations entre les éléments du code.

8.Question

Quels conseils sont donnés concernant les conventions de

nommage pour différents contextes comme les domaines ?
Réponse:Lors du choix des noms, il est bénéfique d'utiliser la

terminologie appropriée en fonction du contexte ; utilisez des

termes d'informatique pour les aspects techniques et des

noms de domaine de problème lorsque cela est pertinent,

pour garantir que les mainteneurs puissent comprendre la

signification sans confusion.

9.Question

Que suggère l'auteur à propos du changement de nom de

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

variables ou de fonctions ?
Réponse:L'auteur encourage à renommer les variables ou les

fonctions lorsque cela est approprié et suggère que ces

changements conduisent généralement à une meilleure

lisibilité. Il peut y avoir une résistance initiale, mais

finalement, de meilleurs noms contribuent positivement à la

maintenabilité du code.

10.Question

Comment les programmeurs devraient-ils différencier les

concepts similaires dans la nomination ?
Réponse:Les programmeurs devraient systématiquement

choisir un seul terme pour chaque concept abstrait et s'y tenir.

Mélanger des terminologies comme 'récupérer', 'obtenir' et

'prendre' peut conduire à confusion, donc utiliser un terme de

manière cohérente simplifie la compréhension.

Chapitre 2 | 3 Fonctions| Questions et réponses

1.Question

Quelle est la première règle pour écrire des fonctions ?
Réponse:Les fonctions doivent être petites. Cela

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

signifie que nous devons nous efforcer de garder les

fonctions encore plus courtes que 20 lignes chaque

fois que cela est possible.

2.Question

Comment pouvons-nous faire en sorte que les fonctions

communiquent leur intention ?
Réponse:Pour communiquer clairement l'intention, les

fonctions doivent faire une seule chose bien et elles doivent

être nommées de manière descriptive. Un bon nom reflète ce

que fait la fonction et minimise l'ambiguïté.

3.Question

Pourquoi les fonctions devraient-elles avoir un maximum

de deux ou trois arguments ?
Réponse:Avoir trop d'arguments complique la

compréhension et le test de la fonction. Moins d'arguments

conduisent à des fonctions plus claires et plus faciles à lire,

moins sujettes aux erreurs.

4.Question

Quelle est l'importance d'éviter les effets secondaires dans

les fonctions ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Les effets secondaires créent des dépendances

cachées et un comportement inattendu dans le code, rendant

difficile sa compréhension et son débogage. Les fonctions ne

doivent effectuer que leur tâche déclarée sans altérer l'état

des variables ou systèmes externes.

5.Question

Que devez-vous faire quand vous avez une fonction qui

fait plus d'une chose ?
Réponse:Si une fonction fait trop de choses, envisagez de la

diviser en petites fonctions qui chacune exécutent une seule

tâche. Cela augmente la lisibilité et la maintenabilité.

6.Question

À quoi fait référence la `Règle de réduction` ?
Réponse:La Règle de réduction souligne que le code doit se

lire comme un récit hiérarchique, où chaque fonction

introduit le niveau d'abstraction suivant, permettant une

compréhension et un flux faciles.

7.Question

Pourquoi est-il problématique de mélanger différents

niveaux d'abstraction dans une fonction ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Mélanger différents niveaux d'abstraction confond

les lecteurs sur ce qui est essentiel par rapport à ce qui n'est

qu'un détail, ce qui entraîne des malentendus et des erreurs

potentielles dans le code.

8.Question

Quel est le principe de `Séparation des Commandes et des

Requêtes` ?
Réponse:Ce principe stipule que les fonctions doivent soit

modifier l'état (commandes), soit retourner des informations

(requêtes), mais pas les deux, car cela peut créer de

l'ambiguïté et réduire la clarté.

9.Question

Quelle est l'importance de la nomenclature dans les

fonctions ?
Réponse:La nomenclature est cruciale car un nom bien choisi

peut transmettre l'objectif de la fonction, rendant plus facile

pour les autres de comprendre et d'utiliser le code sans

nécessiter de commentaires excessifs.

10.Question

Quelle approche devriez-vous adopter concernant la

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

gestion des erreurs dans les fonctions ?
Réponse:Il est préférable d'utiliser des exceptions pour la

gestion des erreurs au lieu de retourner des codes d'erreur.

Cela sépare la logique de gestion des erreurs de la logique

normale et empêche des structures trop imbriquées.

11.Question

Pourquoi devrions-nous éviter d'utiliser des arguments de

type drapeau dans les fonctions ?
Réponse:Les arguments de type drapeau indiquent

généralement qu'une fonction fait plus d'une chose, ce qui

viole le principe de garder les fonctions concentrées sur une

seule tâche.

12.Question

Comment la création d'objets d'arguments peut-elle aider

avec les arguments de fonction ?
Réponse:En enveloppant plusieurs arguments dans un seul

objet, on peut réduire le nombre de paramètres passés à une

fonction, ce qui rend la signature de la fonction plus claire et

facilite la compréhension des données associées.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

13.Question

Quel devrait être le nombre idéal de points de retour

d'une fonction ?
Réponse:Les fonctions devraient idéalement avoir un seul

point de retour pour éviter toute confusion et améliorer la

lisibilité, bien que pour des fonctions très petites, plusieurs

retours puissent être acceptables.

14.Question

Que devez-vous faire lorsqu'une fonction devient trop

complexe ou fastidieuse ?
Réponse:Refactorisez régulièrement la fonction en la

décomposant, en renommant les variables et en simplifiant la

logique pour garder le code propre et compréhensible.

15.Question

Quel est le rôle des fonctions en programmation selon le

chapitre ?
Réponse:Les fonctions servent de verbes dans un langage

spécifique au domaine que les programmeurs créent pour

décrire le système qu'ils développent, facilitant ainsi une

communication plus claire de l'intention du code.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

16.Question

Comment peut-on maintenir les fonctions sur le long

terme ?
Réponse:En respectant des principes tels que garder les

fonctions petites, les nommer de manière descriptive, éviter

les effets secondaires et adhérer au principe de responsabilité

unique, les fonctions peuvent rester propres, organisées et

plus faciles à maintenir.

Chapitre 3 | 4 Commentaires| Questions et réponses

1.Question

Pourquoi Robert C. Martin soutient-il que les

commentaires sont souvent un signe d'échec dans le code

?
Réponse:Martin affirme que les commentaires sont

nécessaires lorsque le code ne parvient pas à

transmettre clairement son intention. Il pense qu'un

code bien écrit devrait être auto-explicatif. Si un

programmeur ressent le besoin de commenter, cela

indique souvent que le code lui-même doit être

mieux écrit pour exprimer son but sans explication

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

supplémentaire.

2.Question

Quel est le principal danger des commentaires

vieillissants dans le code ?
Réponse:À mesure que le code évolue, les commentaires

peuvent devenir obsolètes ou inexactes, entraînant de la

désinformation. Des commentaires anciens peuvent induire

les programmeurs en erreur sur la fonctionnalité du code,

créant un risque de malentendu et d'erreurs.

3.Question

Quelle analogie Martin utilise-t-il pour décrire les

commentaires dans le code ?
Réponse:Il compare les commentaires à un mal nécessaire,

soulignant que bien qu'ils puissent être utiles, ils représentent

souvent un échec à communiquer clairement à travers le code

lui-même.

4.Question

Que suggère Martin aux programmeurs de faire plutôt

que de commenter un code confus ?
Réponse:Il encourage les programmeurs à se concentrer

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

d'abord sur le nettoyage du code, le rendant plus clair et plus

expressif, plutôt que de se fier aux commentaires pour

expliquer un désordre.

5.Question

Quels exemples de bons commentaires Martin

reconnaît-il ?
Réponse:Martin souligne que les commentaires légaux, les

commentaires informatifs et ceux qui donnent des

avertissements sur les conséquences peuvent être bénéfiques,

surtout lorsqu'ils clarifient des aspects tels que les mentions

de droits d'auteur ou des détails importants spécifiques.

6.Question

Comment Martin différencie-t-il les mauvais

commentaires des bons commentaires ?
Réponse:Les mauvais commentaires incluent ceux qui sont

redondants, trompeurs, inutiles ou qui ne servent que de

béquilles pour un code mal écrit. Les bons commentaires, en

revanche, devraient être minimaux, pertinents et ajouter de la

clarté sans créer de désordre.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

7.Question

Pourquoi les commentaires décrivant le code doivent-ils

être évités dans le code non public ?
Réponse:Parce que les javadocs et des commentaires

similaires dans le code non public ajoutent une complexité et

un désordre inutiles. Ils ne sont généralement pas utiles pour

un usage interne et peuvent distraire de la compréhension du

code.

8.Question

Selon Martin, que doit-on faire avec le code commenté ?
Réponse:Martin s'oppose fermement au fait de commenter du

code, suggérant qu'il devrait plutôt être supprimé. Il estime

que les systèmes de contrôle de version peuvent mieux gérer

l'historique du code que de laisser des vestiges dans la base

de code.

9.Question

Que suggère Martin comme solution lorsqu'un

commentaire ne se connecte pas clairement au code

adjacent ?
Réponse:Martin conseille que si un commentaire nécessite

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

une explication supplémentaire ou ne se rapporte pas

clairement au code voisin, il devrait être révisé ou éliminé,

car la connexion devrait être instinctive et évidente.

10.Question

Quelle est l'importance de la nomination dans l'écriture

de code, selon Martin ?
Réponse:Il souligne que des noms bien choisis pour les

fonctions, les variables et les classes peuvent souvent

remplacer le besoin de commentaires en transmettant

l'intention, rendant le code plus compréhensible.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 4 | 5 Mise en forme| Questions et réponses

1.Question

Pourquoi le formatage du code est-il essentiel pour les

développeurs professionnels ?
Réponse:Le formatage du code est primordial car il

impacte considérablement la communication. Un

code bien formaté améliore la lisibilité, signalant le

professionnalisme et l'attention aux détails à

quiconque le examine. Il garantit que les

développeurs peuvent rapidement comprendre

l'intention et la structure du code, facilitant ainsi le

débogage, la maintenance et les futures

modifications.

2.Question

Comment le formatage vertical peut-il améliorer la

lisibilité du code ?
Réponse:Le formatage vertical aide à la lisibilité en veillant à

ce que les concepts liés soient visuellement regroupés. Par

exemple, séparer les fonctions par des lignes vides permet

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

aux lecteurs de distinguer différentes sections logiques du

code, tout comme des paragraphes dans un article. Cela

minimise la confusion et permet aux développeurs de se

concentrer sur des fonctionnalités spécifiques sans avoir à

trier à travers un code encombré.

3.Question

Que signifie la métaphore du 'journal' en ce qui concerne

l'organisation du code ?
Réponse:La métaphore du journal suggère que les fichiers

sources doivent être structurés comme des articles de presse.

Cela signifie commencer par un en-tête informatif (le nom de

la classe), suivi d'un aperçu général (les fonctions

principales), puis descendre dans des implémentations

détaillées et des algorithmes spécifiques, promouvant ainsi à

la fois la clarté et la facilité de navigation.

4.Question

Pourquoi des fonctions étroitement liées doivent-elles être

maintenues verticalement proches dans le code ?
Réponse:Garder des fonctions étroitement liées verticalement

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

proches les unes des autres reflète leur connexion

conceptuelle, améliorant le flux logique du code. Cette

pratique de design permet aux développeurs de saisir

rapidement comment les fonctions interagissent, car l'œil du

lecteur suit naturellement le flux des appels sans avoir besoin

de naviguer en arrière et en avant à travers des segments de

code disparates.

5.Question

Quels sont les risques de ne pas respecter une norme de

formatage commune à l'équipe ?
Réponse:Ne pas maintenir une norme de formatage cohérente

au sein d'une équipe peut mener à un code désordonné qui

semble déconnecté et chaotique. Cette incohérence

complique la collaboration et la compréhension, car des

styles différents peuvent perturber les membres de l'équipe

lors des revues de code et du développement, augmentant

finalement la probabilité de bugs et de malentendus.

6.Question

Comment le formatage horizontal peut-il affecter la

compréhension du code ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Le formatage horizontal, qui utilise stratégiquement

l'espace blanc, aide à différencier les éléments étroitement

liés tout en isolant les composants moins reliés. Par exemple,

ajouter des espaces autour des opérateurs souligne leur

importance dans les expressions, tandis que maintenir un

espacement serré entre les noms de fonction et les paramètres

préserve leur association, facilitant une compréhension plus

rapide.

7.Question

Que suggère Uncle Bob pour les règles de formatage

personnelles ?
Réponse:Uncle Bob préconise des règles de formatage

simples et claires, telles que l'indentation cohérente et

l'utilisation stratégique de l'espace blanc. Ces règles visent à

améliorer la lisibilité, maintenir la fonctionnalité à travers

divers environnements, et promouvoir la facilité de

compréhension à travers la base de code en éliminant la

complexité inutile.

8.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Pourquoi est-il recommandé de limiter la largeur des

lignes de code ?
Réponse:Limiter la largeur des lignes (idéalement autour de

80-120 caractères) améliore la lisibilité en empêchant le

défilement horizontal, ce qui peut entraver la compréhension.

Des lignes plus courtes permettent aux développeurs de saisir

l'information sans perdre de concentration, favorisant une

expérience de lecture plus fluide qui ressemble à la lecture

d'un texte en sections confortables.

9.Question

Quelle est l'importance de l'indentation dans le code

source ?
Réponse:L'indentation représente visuellement la structure

hiérarchique du code, indiquant les portées et les relations.

Cela rend le code compréhensible d'un coup d'œil, permettant

aux développeurs d'identifier rapidement les classes, les

méthodes et les blocs, améliorant ainsi la navigabilité sans

nécessiter une attention extensive.

10.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Comment les variables d'instance doivent-elles être gérées

dans une structure de classe selon les principes de

formatage ?
Réponse:Les variables d'instance doivent être déclarées en

haut d'une classe pour établir un point de référence clair pour

les développeurs. Cette convention minimise la distance

verticale entre les concepts liés, permettant un accès et une

gestion plus intuitifs de l'état à travers les méthodes de la

classe.

Chapitre 5 | 6 Objets et Structures de Données|
Questions et réponses

1.Question

Pourquoi gardons-nous nos variables privées dans la

programmation orientée objet ?
Réponse:Nous gardons nos variables privées pour

éviter que du code externe ne dépende d'elles. Cette

encapsulation nous permet de changer le type ou

l'implémentation de ces variables sans affecter

d'autres parties du code.

2.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Quelle est la différence entre exposer l'implémentation

via des accesseurs et des mutateurs et utiliser des

abstractions ?
Réponse:Exposer l'implémentation par le biais d'accesseurs

et de mutateurs dévoile la structure interne des données,

rendant les changements plus difficiles à l'avenir. En

revanche, utiliser des abstractions permet de masquer les

détails d'implémentation et de fournir une interface contrôlée

pour l'interaction.

3.Question

En quoi les objets diffèrent-ils des structures de données

selon le contenu ?
Réponse:Les objets encapsulent leurs données et offrent des

méthodes pour opérer sur ces données, tandis que les

structures de données exposent leurs données sans inclure

d'opérations significatives. Cette distinction influence la

conception de nos systèmes.

4.Question

Quelle est la signification de la Loi de Demeter ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:La Loi de Demeter stipule qu'une méthode ne

devrait appeler que des méthodes de sa propre classe, des

objets qu'elle crée, des arguments passés ou des variables

d'instance, favorisant ainsi l'encapsulation et réduisant les

dépendances entre les classes.

5.Question

Pouvez-vous expliquer le concept de 'train wrecks' dans le

code ?
Réponse:Les 'train wrecks' désignent du code ayant de

nombreuses chaînes d'appels de méthodes, rendant la lecture

et la maintenance difficiles. Cela indique souvent une

violation de la Loi de Demeter, car le code démontre trop de

connaissances sur la structure interne de différents objets.

6.Question

Pourquoi l'ajout de nouvelles fonctions peut-il être plus

facile dans le code procédural par rapport au code orienté

objet ?
Réponse:Dans le code procédural, ajouter de nouvelles

fonctions nécessite généralement aucune modification des

structures de données existantes, ce qui est simple. En

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

revanche, l'ajout de nouvelles fonctions dans le code OO

nécessite souvent des modifications dans toutes les classes

existantes qui pourraient être affectées.

7.Question

Qu'est-ce que les Objets de Transfert de Données (DTO) ?
Réponse:Les DTO sont des classes simples avec des

variables publiques et sans comportement, principalement

utilisées pour transporter des données. Ils simplifient

l'échange de données entre des systèmes comme les bases de

données et le code de l'application.

8.Question

Quelle est l'approche idéale en matière de conception lors

de l'utilisation des Active Records ?
Réponse:Les Active Records doivent être considérés comme

des structures de données, avec des entités séparées gérant la

logique métier. Cela évite la confusion créée par le mélange

des caractéristiques des structures de données avec des

comportements orientés objet.

9.Question

Quelle conclusion pouvons-nous tirer sur l'utilisation des

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

objets par rapport aux structures de données ?
Réponse:Une bonne conception logicielle nécessite un

équilibre entre objets et structures de données. Les objets

offrent une flexibilité pour ajouter de nouveaux types sans

impacter le comportement, tandis que les structures de

données permettent d'ajouter facilement de nouveaux

comportements. Les développeurs doivent évaluer les

besoins de leur système pour déterminer la meilleure

approche.

Chapitre 6 | Gestion des erreurs| Questions et
réponses

1.Question

Pourquoi la gestion des erreurs est-elle importante dans le

CODER PROPREMENT ?
Réponse:La gestion des erreurs est essentielle dans

le CODER PROPREMENT car elle aborde la

réalité selon laquelle la programmation implique

inévitablement de traiter des erreurs dues à des

saisies anormales ou des défaillances d'appareils.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Cependant, une gestion efficace des erreurs ne doit

pas obscurcir la logique principale du code ; au

contraire, elle doit maintenir la clarté et la

séparation par rapport à la logique métier pour

améliorer la lisibilité et la maintenabilité.

2.Question

Quels sont les avantages d'utiliser des exceptions plutôt

que des codes de retour pour la gestion des erreurs ?
Réponse:L'utilisation d'exceptions conduit à un code d'appel

plus propre, non encombré par des vérifications d'erreur. Les

exceptions permettent au programmeur de séparer la gestion

des erreurs de la logique principale du programme. Cette

séparation améliore la compréhension et rend l'algorithme

plus visuellement clair.

3.Question

Quel est l'objectif d'écrire d'abord la déclaration

try-catch-finally ?
Réponse:Écrire d'abord la déclaration try-catch-finally aide à

établir le cadre de gestion des erreurs dès le départ, clarifiant

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

quelles exceptions peuvent se produire et garantissant une

gestion des transactions robuste. Cela définit comment le

code doit se comporter face aux échecs et maintient des états

cohérents, ce qui est crucial dans les opérations complexes.

4.Question

Comment les exceptions doivent-elles être classées pour

une meilleure gestion des erreurs ?
Réponse:Les exceptions doivent être définies en fonction de

la manière dont elles seront attrapées par l'appelant plutôt

qu'en fonction de leur origine. Cette approche minimise la

duplication et permet un code plus propre, car la gestion

commune peut être abstraite en un seul type d'exception,

simplifiant ainsi le processus de gestion des erreurs.

5.Question

Qu'est-ce que le MODÈLE DE CAS SPÉCIAL, et

comment améliore-t-il la clarté du code ?
Réponse:Le MODÈLE DE CAS SPÉCIAL consiste à créer

une classe ou un objet qui gère les cas spéciaux, permettant

au code principal de rester dégagé de la logique

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

exceptionnelle. Cette encapsulation simplifie le code en

gérant le comportement exceptionnel en interne, rendant la

logique principale plus facile à lire et à maintenir.

6.Question

Pourquoi est-il conseillé de ne pas retourner null depuis

les méthodes ?
Réponse:Retourner null crée un fardeau de maintenance en

introduisant la nécessité de vérifications nulles dans tout le

code, augmentant la possibilité d'erreurs d'exécution telles

que les NullPointerExceptions. Il est préférable de lancer des

exceptions ou de retourner des objets de cas spéciaux, ce qui

peut prévenir de telles erreurs et maintenir un code plus

propre.

7.Question

Quelles sont les implications de passer des paramètres

null aux méthodes ?
Réponse:Passer des paramètres null peut entraîner des

exceptions d'exécution inattendues et compliquer la gestion

des erreurs. Il est recommandé d'éviter de passer null dans

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

l'ensemble, car cela indique un potentiel défaut dans le code

qui peut entraîner une diminution de la fiabilité. Des

assertions peuvent être utilisées pour documenter les attentes,

mais interdire null empêche que ces erreurs surviennent en

premier lieu.

8.Question

Comment les pratiques de gestion des erreurs

peuvent-elles améliorer la maintenance du code ?
Réponse:En considérant la gestion des erreurs comme une

préoccupation distincte de la logique métier, les

programmeurs peuvent rendre leur code plus maintenable.

Une séparation claire permet un raisonnement et une

compréhension indépendants de la gestion des erreurs,

facilitant une meilleure collaboration entre les équipes et

favorisant une culture d'écriture de code robuste et propre.

9.Question

Quelles recommandations le chapitre fait-il pour gérer

efficacement les exceptions ?
Réponse:Les recommandations incluent l'utilisation

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

d'exceptions non vérifiées pour un code plus propre, la

fourniture de messages d'erreur informatifs et de contexte,

l'encapsulation des API tierces pour minimiser les

dépendances, l'utilisation de classes d'exception

personnalisées selon les besoins des appelants, et l'évitement

de retours et de paramètres null pour améliorer la stabilité du

code.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 7 | 8 Limites| Questions et réponses

1.Question

Quels sont les défis liés à l'intégration de code tiers dans

un système ?
Réponse:L'intégration de code tiers entraîne souvent

des tensions entre les fournisseurs d'interfaces et les

utilisateurs en raison de besoins divergents. Les

fournisseurs visent une applicabilité large, tandis

que les utilisateurs recherchent des solutions sur

mesure. Cette divergence peut engendrer des

problèmes aux limites du système, notamment dans

des cas comme l'utilisation de java.util.Map, où

l'exposition involontaire de méthodes (comme

clear()) pourrait introduire des risques de

modifications non souhaitées ou de violations des

contraintes de conception.

2.Question

Comment pouvons-nous gérer efficacement les limites

dans notre code ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Nous devrions encapsuler les interfaces limites

comme Map au sein de classes personnalisées (par exemple,

Capteurs), limitant leur exposition à nos applications. Cette

approche réduit les abus, permet des modifications plus

faciles si l'interface change, et aide à maintenir un code

propre et compréhensible en confinant la complexité.

3.Question

Qu'est-ce que les tests d'apprentissage et en quoi

bénéficient-ils au développement logiciel ?
Réponse:Les tests d'apprentissage sont des tests exploratoires

rédigés pour comprendre les API tierces avant leur

intégration dans le code de production. Ils permettent aux

développeurs d'expérimenter avec de nouvelles bibliothèques

en isolation, consolidant ainsi leur compréhension et leurs

attentes en matière de comportement. Ils servent également

de filet de sécurité, garantissant que les mises à jour futures

de la bibliothèque tierce ne cassent pas la fonctionnalité

existante.

4.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Quelle stratégie de conception pouvons-nous utiliser face

à des interfaces inconnues ou non définies ?
Réponse:Lorsque nous sommes confrontés à des interfaces

inconnues, nous pouvons définir nos propres interfaces qui

représentent nos interactions souhaitées (par exemple, créer

une interface Émetteur en attendant l'API réelle). Cela

maintient notre implémentation propre, nous permet de

travailler productivement en attendant, et facilite ensuite les

tests et l'adaptation lorsque l'interface inconnue devient

claire.

5.Question

Pourquoi est-il important d'isoler le code tiers du reste de

votre application ?
Réponse:Isoler le code tiers empêche un couplage étroit,

rendant le système moins vulnérable aux changements des

bibliothèques tierces. Cela favorise la maintenabilité et la

lisibilité du code, et permet une adaptation plus facile aux

nouvelles versions, car les points d'intégration sont bien

définis et limités.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 8 | 9 Tests Unitaires| Questions et réponses

1.Question

Quel impact la qualité du code de test a-t-elle sur la

qualité du code de production ?
Réponse:La qualité du code de test est cruciale pour

maintenir le code de production. Des tests clairs et

bien structurés aident à s'assurer que tout

changement apporté au code de production peut être

vérifié facilement, préservant ainsi la flexibilité, la

maintenabilité et la réutilisabilité. En revanche, un

code de test mal structuré augmente la probabilité

d'échec lors des tests et empêche les développeurs

d'apporter les modifications nécessaires, conduisant

à une baisse de la qualité globale tant des tests que

du code de production.

2.Question

Pourquoi la lisibilité est-elle mise en avant dans les tests

unitaires ?
Réponse:La lisibilité est mise en avant dans les tests unitaires

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

car les tests doivent être facilement compris par tous les

membres de l'équipe, y compris ceux qui ne les ont peut-être

pas écrits. Les tests doivent clairement exprimer leur

intention avec un minimum de distractions causées par des

détails inutiles. Cette clarté garantit que quiconque peut

rapidement comprendre ce que chaque test vérifie sans avoir

à plonger dans une logique complexe.

3.Question

Quelles sont les trois lois du développement piloté par les

tests (TDD) discutées dans le Chapitre 8 ?
Réponse:1. Vous ne pouvez pas écrire de code de production

tant que vous n'avez pas écrit un test unitaire échoué. 2. Vous

ne pouvez pas écrire plus d'un test unitaire que ce qui est

suffisant pour échouer, même si cela signifie ne pas

compiler. 3. Vous ne pouvez pas écrire plus de code de

production que ce qui est suffisant pour faire passer le test

actuellement échoué.

4.Question

Quelle erreur courante l'équipe encadrée par l'auteur

a-t-elle commise avec son code de test ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:L'équipe a décidé que son code de test n'avait pas

besoin d'être maintenu aux mêmes normes de qualité que son

code de production, adoptant une approche 'rapide et sale'.

Cela a conduit à des tests peu soignés qui étaient difficiles à

gérer et à maintenir, résultant finalement en un échec de ses

efforts de test et une dégradation de la qualité de son code de

production.

5.Question

Comment des tests unitaires efficaces peuvent-ils

contribuer à la confiance dans les modifications du code

de production ?
Réponse:Des tests unitaires efficaces fournissent un filet de

sécurité qui permet aux développeurs d'apporter des

modifications au code de production sans craindre

d'introduire de nouveaux bugs. Lorsque les tests sont

complets et clairs, les développeurs peuvent refactoriser et

améliorer le code plus librement, en sachant qu'ils peuvent

rapidement vérifier que leurs modifications ne cassent pas la

fonctionnalité existante.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

6.Question

Que signifie l'acronyme F.I.R.S.T. dans le contexte des

tests propres ?
Réponse:F.I.R.S.T. signifie : 1. **Rapide** - les tests doivent

s'exécuter rapidement. 2. **Indépendant** - les tests ne

doivent pas dépendre les uns des autres. 3. **Répétable** -

les tests doivent produire les mêmes résultats dans n'importe

quel environnement. 4. **Autovalidant** - les tests doivent

avoir une indication claire de réussite ou d'échec. 5.

Opportune - les tests doivent être écrits avant ou en

même temps que le code de production.

7.Question

Quel est le bénéfice de créer un langage de test spécifique

à un domaine dans les tests unitaires ?
Réponse:Créer un langage de test spécifique à un domaine

simplifie le processus d'écriture des tests et améliore la

lisibilité. En abstrait les actions courantes dans des fonctions

spécialisées, les testeurs peuvent exprimer leur intention plus

clairement, permettant à la fois aux rédacteurs et aux lecteurs

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

des tests de comprendre la logique sous-jacente sans être

encombrés de détails inutiles.

8.Question

Quelle est la principale conclusion sur la relation entre le

code de test et le code de production ?
Réponse:La principale conclusion est que des tests propres

sont tout aussi importants que du code de production propre.

Maintenir un haut standard pour le code de test préserve la

santé du projet en garantissant que le code de production

reste flexible, maintenable et de bonne qualité. Négliger le

code de test peut conduire à une détérioration globale du

projet.

Chapitre 9 | 10 Classes| Questions et réponses

1.Question

Quel est le principal sujet du Chapitre 10 de 'CODER

PROPREMENT'?
Réponse:Le principal sujet du Chapitre 10 concerne

l'organisation des classes de manière propre, en

mettant l'accent sur l'importance de la taille des

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

classes, de l'encapsulation, de la cohésion et du

Principe de Responsabilité Unique (SRP).

2.Question

Pourquoi les classes devraient-elles être petites selon

l'auteur ?
Réponse:Les classes devraient être petites parce qu'elles

doivent encapsuler une seule responsabilité, rendant leur

maintenance, compréhension et modification plus faciles.

Une petite classe réduit la complexité et clarifie sa fonction.

3.Question

Que signifie le terme 'Principe de Responsabilité Unique'

(SRP) ?
Réponse:Le Principe de Responsabilité Unique stipule qu'une

classe ou un module ne devrait avoir qu'une seule raison de

changer. Cela signifie que chaque classe doit se concentrer

sur une responsabilité particulière pour améliorer la

maintenabilité et réduire le couplage.

4.Question

Comment le nom d'une classe peut-il indiquer un

problème de taille ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Si le nom d'une classe est ambigu ou contient des

mots vagues comme Processor ou Manager, cela suggère

souvent que la classe a trop de responsabilités. Des noms

clairs et concis aident à indiquer des responsabilités bien

définies et singulières.

5.Question

Quel exemple l'auteur donne-t-il pour démontrer une

classe avec trop de responsabilités ?
Réponse:L'auteur donne l'exemple de la classe

'SuperDashboard', qui possède environ 70 méthodes

publiques et représente ainsi une 'classe Dieu' — une classe

qui combine plusieurs responsabilités, la rendant trop

complexe.

6.Question

Que se passe-t-il lorsqu'une classe enfreint le SRP ?
Réponse:Lorsqu'une classe enfreint le SRP, elle devient plus

difficile à comprendre et à maintenir. Lorsque des

modifications sont nécessaires, le risque de briser les

fonctionnalités existantes augmente car la classe gère

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

plusieurs responsabilités et nécessite des tests approfondis.

7.Question

Quelles stratégies peuvent être utilisées pour améliorer

l'organisation et la maintenabilité des classes ?
Réponse:Une stratégie consiste à refactoriser de grandes

classes en classes plus petites, à responsabilité unique. Une

autre stratégie est d'appliquer le Principe d'Inversion de

Dépendance (DIP) en concevant des classes qui dépendent

d'abstractions et non d'implémentations concrètes, facilitant

ainsi les tests et réduisant le couplage.

8.Question

Comment la promotion d'une forte cohésion au sein des

classes bénéficie-t-elle à la conception logicielle ?
Réponse:Une forte cohésion signifie que les méthodes et

variables d'une classe travaillent étroitement ensemble, ce qui

améliore la clarté de l'objectif de la classe, facilite sa

compréhension et son débogage, et réduit la probabilité

d'interactions non intentionnelles entre différentes parties du

code.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

9.Question

En quoi l'exemple des classes SQL restructurées

illustre-t-il de bonnes pratiques de conception ?
Réponse:Les classes SQL restructurées illustrent une bonne

conception en respectant le Principe Ouvert-Fermé, étant

organisées en classes dérivées pour différentes commandes

SQL, minimisant les changements et risques, et isolant la

fonctionnalité des classes pour améliorer la lisibilité et la

maintenabilité.

10.Question

Quelle est la relation entre le maintien d'un faible

couplage et l'amélioration de la testabilité dans le code ?
Réponse:Maintenir un faible couplage entre les classes les

isole des modifications l'une de l'autre, ce qui simplifie les

tests et permet de comprendre les parties du système

indépendamment. Cela se traduit par des classes plus faciles

à tester et à modifier sans affecter l'ensemble du système.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 10 | 11 Systèmes| Questions et réponses

1.Question

Quel est le message principal concernant la complexité tel

qu'indiqué dans le chapitre ?
Réponse:La complexité est nuisible ; elle complique

le travail des développeurs et entraîne des difficultés

dans la planification, la construction et les tests des

logiciels, tout comme elle affecte la gestion d'une

ville.

2.Question

Comment le chapitre suggère-t-il de gérer efficacement

les systèmes logiciels ?
Réponse:En organisant des équipes pour traiter des

préoccupations distinctes, tout comme on gère différents

aspects d'une ville, et en séparant la construction des

systèmes de leur utilisation.

3.Question

Que souligne le chapitre à propos de la relation entre

construction et utilisation dans les systèmes logiciels ?
Réponse:Il est essentiel de distinguer la phase de

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

construction, où les dépendances sont établies, et la phase

d'utilisation, où la logique de l'application s'exécute. Les

mélanger entraîne des complications.

4.Question

Expliquez l'idiome de l'initialisation paresseuse et un de

ses inconvénients tel que présenté dans ce chapitre.
Réponse:L'initialisation paresseuse permet de retarder la

construction d'un objet jusqu'à ce qu'il soit nécessaire, ce qui

peut améliorer les performances. Cependant, cela crée des

dépendances codées en dur qui compliquent les tests et

violent le principe de responsabilité unique.

5.Question

Que signifie 'Modulariser le processus de démarrage'

dans le chapitre ?
Réponse:Cela fait référence à l'isolement de la construction et

de l'initialisation des objets d'application de la logique

principale de l'application, permettant une architecture

système plus claire et plus maintenable.

6.Question

Quel rôle joue l'injection de dépendance (DI) dans

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

l'architecture logicielle selon le chapitre ?
Réponse:L'injection de dépendance aide à séparer la

construction des objets dépendants de leur utilisation, en

respectant le principe de responsabilité unique, ce qui permet

une meilleure gestion et un meilleur test du logiciel.

7.Question

Comment le chapitre lie-t-il la croissance des systèmes au

développement urbain ?
Réponse:Tout comme les villes évoluent des petits villages à

des systèmes complexes au fil du temps, les systèmes

logiciels devraient croître progressivement avec une

séparation appropriée des préoccupations, plutôt que de viser

un design parfait dès le départ.

8.Question

Que signifie optimiser la prise de décision dans les

systèmes logiciels ?
Réponse:En modulant les préoccupations et en maintenant

une séparation claire, le chapitre préconise de différer les

décisions jusqu'à ce que les informations nécessaires soient

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

disponibles, conduisant à des choix mieux éclairés.

9.Question

Quelle est l'importance des langages spécifiques au

domaine (DSL) dans le développement logiciel ?
Réponse:Les DSL comblent le fossé entre les concepts de

domaine et l'implémentation, permettant aux développeurs

d'écrire du code qui communique clairement la logique du

domaine et réduit le risque de mauvaise interprétation.

10.Question

Pourquoi l'accent sur la simplicité est-il souligné lors de

la conception des systèmes ?
Réponse:La simplicité permet une compréhension et une

maintenance plus faciles du code, réduisant la complexité qui

peut entraîner des bogues et obscurcir la logique du domaine,

soutenant finalement le développement agile.

Chapitre 11 | 12 Émergence| Questions et réponses

1.Question

Quelles sont les quatre règles simples qui peuvent aider à

créer de bons designs logiciels ?
Réponse:1. Passe tous les tests

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

2. Ne contient aucune duplication

3. Exprime l'intention du programmeur

4. Minimise le nombre de classes et de méthodes

2.Question

Pourquoi est-il important qu'un design passe tous les tests

?
Réponse:Un design doit produire un système qui fonctionne

comme prévu. S'il ne peut pas être vérifié par des tests, son

intégrité est discutable. Les systèmes testables permettent de

petites classes à but unique, facilitant ainsi le respect du

principe de responsabilité unique (SRP).

3.Question

Comment le fait d'écrire des tests conduit-il à de

meilleurs designs logiciels ?
Réponse:Écrire des tests incite à un code moins couplé, car

les tests sont plus faciles à écrire pour des classes bien

structurées. Une attention accrue portée aux tests aligne

naturellement l'architecture sur des objectifs de design

orienté objet tels que le faible couplage et la haute cohésion.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

4.Question

Comment vous assurez-vous que votre code reste propre

après avoir ajouté de nouvelles lignes ?
Réponse:Après avoir ajouté quelques lignes de code, faites

une pause et réfléchissez au design. Si vous constatez que

vous avez dégradé la structure, nettoyez-la en la refactorisant

tout en exécutant des tests pour vous assurer que rien n'est

cassé.

5.Question

Quel est l'ennemi principal d'un système bien conçu ?
Réponse:La duplication.

6.Question

Pouvez-vous expliquer comment la duplication se

manifeste dans le code logiciel ?
Réponse:La duplication peut apparaître sous la forme de

lignes de code identiques, de lignes de code similaires qui

peuvent être refactorisées pour se ressembler, ou dans des

méthodes d'implémentation qui effectuent des fonctions

similaires mais sont écrites séparément.

7.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Comment pouvez-vous éliminer la duplication dans les

méthodes ?
Réponse:En extrayant la fonctionnalité commune dans une

méthode partagée. Par exemple, dans les méthodes de mise à

l'échelle et de rotation d'image, extrayez la logique de

remplacement d'image dans une méthode `remplacerImage`

pour réduire la répétition.

8.Question

Quels sont les avantages d'avoir un code expressif ?
Réponse:Un code expressif transmet clairement l'intention du

programmeur, facilitant la compréhension du système pour

les autres (y compris les futurs mainteneurs), réduisant ainsi

les erreurs et abaissant les coûts de maintenance.

9.Question

Quel rôle jouent de bons noms dans l'expressivité du code

?
Réponse:De bons noms fournissent un aperçu immédiat des

responsabilités des classes et des fonctions, permettant aux

autres de comprendre leur objectif sans avoir à plonger

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

profondément dans le code.

10.Question

Pourquoi est-il essentiel de garder le nombre de classes et

de méthodes faible ?
Réponse:Bien qu'il soit important de maintenir de petites

classes et méthodes pour la clarté, en créer trop peut entraîner

une complexité inutile. Au lieu de cela, visez à garder

l'ensemble du système petit tout en équilibrant la propreté

procédurale.

11.Question

Quel principe général les pratiques décrites dans ce

chapitre servent-elles ?
Réponse:Elles cristallisent des décennies d'expérience en

règles et directives pratiques qui aident les développeurs à

adhérer aux bons principes et motifs de conception.

Chapitre 12 | 13 Concurrence| Questions et réponses

1.Question

Quelles sont les principales raisons d'adopter la

concurrence en programmation ?
Réponse:La concurrence permet de découpler les

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

tâches de leur timing, améliorant ainsi le débit et la

structure du système. Elle favorise une meilleure

gestion des ressources en réponse aux contraintes de

temps et permet des applications plus réactives en

gérant plusieurs tâches en parallèle.

2.Question

Quels sont les idées reçues courantes concernant les

améliorations liées à la concurrence ?
Réponse:Un mythe majeur est que la concurrence améliore

toujours la performance ; cependant, cela n'est vrai que

lorsqu'il y a un temps d'attente significatif pouvant être

partagé entre les threads. Une autre idée reçue est que

concevoir des systèmes concurrents ne diffère pas

significativement de celui des systèmes à thread unique.

3.Question

Pourquoi gérer les données partagées est-il un défi

majeur en programmation concurrente ?
Réponse:Lorsque plusieurs threads tentent d'accéder et de

modifier des données partagées, ils peuvent interférer les uns

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

avec les autres, entraînant des résultats incohérents. Cela

nécessite une gestion rigoureuse de la synchronisation,

rendant la programmation concurrente de plus en plus

complexe.

4.Question

Comment le principe de responsabilité unique (SRP)

peut-il s'appliquer à la conception de la concurrence ?
Réponse:Le SRP suggère que le code ne devrait avoir qu'une

seule raison de changer. Dans le contexte de la concurrence,

cela signifie garder le code lié à la concurrence séparé du

code non concurrent pour gérer la complexité et faciliter le

débogage.

5.Question

Quelles sont quelques stratégies pour minimiser les

erreurs liées à la concurrence ?
Réponse:Vous pouvez limiter la portée des données

partagées, utiliser des copies de données autant que possible

et vous assurer que les threads fonctionnent de manière aussi

indépendante que possible. Ces stratégies réduisent la

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

probabilité d'interactions non intentionnelles entre les

threads.

6.Question

Quelle est l'importance de tester le code concurrent et

quels sont les défis spécifiques que cela présente ?
Réponse:Tester le code concurrent est vital car prouver sa

correction peut être extrêmement difficile ; les bugs peuvent

ne se manifester que dans des conditions spécifiques,

entraînant des échecs intermittents. Par conséquent, les tests

doivent être approfondis et couvrir diverses configurations et

environnements.

7.Question

Quelles sont des méthodes efficaces pour révéler les

problèmes de concurrence cachés pendant les tests ?
Réponse:L'utilisation de stratégies telles que

l'instrumentation du code, qui force différents chemins

d'exécution, peut grandement améliorer la détection de bugs

de concurrence rares. De plus, exécuter des tests sur diverses

plateformes et configurations peut aider à identifier des

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

problèmes ne se produisant que dans des environnements

spécifiques.

8.Question

Sur quoi un développeur doit-il se concentrer lors de

l'écriture de code concurrent ?
Réponse:Les développeurs devraient suivre les principes du

CODER PROPREMENT, séparer les préoccupations,

minimiser l'état partagé et tester rigoureusement leur code. Ils

doivent anticiper les problèmes potentiels de concurrence tel

que le blocage et la famine lors de la conception de leurs

systèmes.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 13 | 14 Raffinement Successif| Questions et
réponses

1.Question

Quel est le thème principal abordé dans le chapitre sur la

classe Args ?
Réponse:Le chapitre souligne la nécessité d'un

perfectionnement successif dans le développement

de code, montrant comment transformer une base

de code désordonnée et mal structurée en un code

propre et maintenable.

2.Question

Comment peut-on efficacement passer d'un brouillon de

code à une implémentation propre ?
Réponse:Le processus consiste à écrire une version initiale

du code, à identifier les zones de désordre, et à le refactoriser

progressivement par de petits changements incrémentiels tout

en s'assurant que le code reste fonctionnel après chaque

modification.

3.Question

Pourquoi est-il décrit comme un suicide professionnel de

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

laisser du code dans un état brut ?
Réponse:Laisser du code dans un état brut peut entraîner une

augmentation des taux de bogues, des coûts de maintenance

plus élevés, et une complexité qui peut entraver le

développement ultérieur, causant finalement des retards et

des complications dans le projet.

4.Question

Quel rôle joue le développement piloté par les tests (TDD)

dans le processus de refactorisation selon le chapitre ?
Réponse:Le TDD garantit que les modifications apportées

pendant le processus de refactorisation ne cassent pas la

fonctionnalité existante. Cela implique d'écrire des tests

avant les changements de code, permettant aux développeurs

de peaufiner leur code tout en maintenant la confiance dans

sa correction.

5.Question

Quels défis se posent lors de l'ajout de nouvelles

fonctionnalités à une base de code, comme souligné dans

le chapitre ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Ajouter de nouvelles fonctionnalités peut

compliquer une base de code déjà désordonnée, entraînant

des difficultés accrues en matière de débogage et de

maintenance. Cela se manifeste dans la façon dont l'ajout de

deux nouveaux types d'arguments a transformé un système

gérable en un réseau complexe d'interactions et de

dépendances.

6.Question

Comment la complexité du code peut-elle se détériorer

avec le temps, et quelles stratégies peuvent combattre cela

?
Réponse:La complexité du code peut empirer à mesure que

des fonctionnalités sont ajoutées sans maintenance,

entraînant des dépendances entrelacées. Pour y remédier, des

révisions de code continues, des pratiques de codage propre,

et une refactorisation régulière devraient être employées pour

garder la base de code gérable.

7.Question

Quel est l'impact à long terme de la négligence de la

qualité du code dans les projets logiciels ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Négliger la qualité du code peut conduire à un

'marécage malin' de code qui ralentit le développement,

augmente la difficulté de mise en œuvre de futurs

changements, et finit par entraver la productivité de l'équipe.

8.Question

Pourquoi est-il plus facile de maintenir du code propre

par rapport à du code 'pourrissant' ?
Réponse:Le code propre est plus simple et plus

compréhensible, permettant aux développeurs de résoudre

rapidement et de corriger les problèmes, tandis que de

nouveaux changements peuvent être facilement intégrés sans

introduire plus de complexité. En revanche, le code

pourrissant devient un enchevêtrement qui complique la

gestion des dépendances et des fonctionnalités.

9.Question

Quelle leçon fondamentale sur la programmation l'auteur

transmet-il à travers l'exemple de la classe Args ?
Réponse:La programmation est un métier qui nécessite un

perfectionnement itératif. Le CODER PROPREMENT ne

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

surgit pas d'un premier brouillon, mais se cultive à travers

des ajustements continus et un engagement à maintenir des

normes élevées tout au long du processus de développement.

10.Question

Quelle est l'importance d'une nomination claire et de la

taille des fonctions dans le contexte de la lisibilité et de la

maintenance du code ?
Réponse:Une convention de nommage claire et des fonctions

de taille appropriée améliorent considérablement la lisibilité

et la compréhension du code, permettant aux développeurs de

saisir rapidement la fonctionnalité et rendant le code plus

facile à maintenir et à faire évoluer.

Chapitre 14 | 15 Les Internes de JUnit| Questions et
réponses

1.Question

Quelle est l'importance du ComparisonCompactor dans

le framework JUnit ?
Réponse:Le ComparisonCompactor est essentiel

dans le framework JUnit car il aide à identifier les

divergences entre deux chaînes de manière claire et

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

informative. En générant une sortie formatée qui

met en évidence les différences entre les chaînes, il

améliore le processus de débogage pour les

développeurs, leur permettant de localiser

rapidement les erreurs dans leurs tests.

2.Question

Comment Kent Beck et Eric Gamma ont-ils développé

JUnit ?
Réponse:Kent Beck et Eric Gamma ont développé JUnit lors

d'un vol où Kent voulait apprendre Java et Eric s'intéressait

au framework de test Smalltalk de Kent. Leur collaboration a

abouti à un framework de test simple mais élégant qui a posé

les bases de nombreuses pratiques de test en Java.

3.Question

Quelles améliorations ont été suggérées pour le code du

ComparisonCompactor ?
Réponse:Les améliorations incluaient le renommage des

variables membres pour supprimer les préfixes inutiles,

l'encapsulation des vérifications conditionnelles pour plus de

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

clarté, la simplification des méthodes pour améliorer la

lisibilité et l'assurance que les fonctions reflètent bien leurs

objectifs. Ces changements contribuent à rendre le code plus

propre et plus facile à maintenir.

4.Question

À quoi fait référence la 'règle du scout' dans le contexte

du développement logiciel ?
Réponse:La règle du scout dans le développement logiciel

encourage les développeurs à laisser la base de code plus

propre qu'ils ne l'ont trouvée. Ce principe prône le refactoring

continu et l'amélioration du code existant, garantissant

qu'avec chaque contribution, la qualité de la base de code

s'améliore.

5.Question

Pourquoi l'analyse de la couverture des tests est-elle

importante pour les tests de ComparisonCompactor ?
Réponse:L'analyse de la couverture des tests est importante

pour les tests de ComparisonCompactor car elle fournit des

informations sur la quantité de code exercée par les tests.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Atteindre une couverture de 100 % indique que toutes les

lignes et branches ont été testées, augmentant ainsi la

confiance dans la fonctionnalité et la robustesse du code.

6.Question

Quel rôle joue le refactoring dans le développement

logiciel ?
Réponse:Le refactoring est un processus critique dans le

développement logiciel qui consiste à restructurer le code

existant sans changer son comportement externe. Il vise à

améliorer la lisibilité du code, à réduire la complexité et à

améliorer la maintenabilité, menant finalement à des logiciels

plus efficaces et sans erreurs.

7.Question

Comment la version finale du ComparisonCompactor

reflète-t-elle les principes de CODER PROPREMENT ?
Réponse:La version finale du ComparisonCompactor incarne

les principes de CODER PROPREMENT en séparant

clairement les préoccupations entre les fonctions d'analyse et

de synthèse, en utilisant des conventions de nommage

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

descriptives et en maintenant un flux logique qui améliore la

lisibilité. Elle démontre des améliorations itératives grâce au

refactoring, résultant en une structure de code plus propre et

mieux organisée.

8.Question

Que peuvent apprendre les développeurs du passage sur

la structure des cas de test ?
Réponse:Les développeurs peuvent apprendre l'importance

de la simplicité et de la clarté dans la structuration des cas de

test. Les tests bien structurés sont non seulement plus faciles

à lire et à comprendre, mais facilitent également la

maintenance adéquate et encouragent les meilleures pratiques

en matière de test.

9.Question

Comment l'auteur a-t-il démontré la nature itérative du

refactoring dans le chapitre ?
Réponse:L'auteur a illustré la nature itérative du refactoring

en montrant comment les décisions de refactoring antérieures

ont été revisitées et modifiées en fonction d'aperçus

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

ultérieurs. Cela reflète la nature non linéaire et exploratoire

de l'amélioration du code, soulignant que les refactors

initiaux peuvent mener à de nouvelles perspectives

nécessitant d'autres changements.

Chapitre 15 | 16 Refactorisation de SerialDate|
Questions et réponses

1.Question

Pourquoi est-il important de critiquer le code, même

lorsqu'il semble 'bon' ?
Réponse:Critiquer le code, même s'il est jugé 'bon',

est essentiel pour l'amélioration continue et

l'apprentissage. Grâce à ces évaluations, les

programmeurs peuvent découvrir des problèmes

cachés, améliorer la fonctionnalité et renforcer leur

compréhension des meilleures pratiques. Comme le

souligne le texte, c'est une pratique standard dans

des professions telles que la médecine et l'aviation,

favorisant une culture d'excellence et de

responsabilité.

2.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Que signifie le terme 'refactoring' dans le contexte de la

programmation ?
Réponse:Le refactoring se réfère au processus de

restructuration du code existant sans changer son

comportement externe. Il vise à améliorer la structure, la

lisibilité et la maintenabilité du code. Le chapitre souligne

qu'à travers un refactoring systématique, on peut CODER

PROPREMENT, corriger des bogues et améliorer la

couverture de test, rendant finalement le code plus facile à

travailler pour les développeurs futurs.

3.Question

Comment l'utilisation des énumérations peut-elle

améliorer la clarté du code en programmation ?
Réponse:Les énumérations fournissent un ensemble clair et

défini de constantes, rendant le code plus lisible et réduisant

les erreurs associées à l'utilisation d'entiers bruts. Dans le cas

de la gestion des dates, passer d'identifiants basés sur des

entiers à des énumérations comme Mois et Jour rend le code

auto-documenté, car il communique l'intention sans

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

nécessiter de commentaires supplémentaires.

4.Question

Pourquoi devrions-nous minimiser la redondance dans les

commentaires de code ?
Réponse:Les commentaires redondants peuvent entraîner de

la désinformation et du désordre, obscurcissant la clarté du

code. Un point important du texte est que le code lui-même

devrait être suffisamment clair pour minimiser le besoin de

commentaires. Lorsque des commentaires sont nécessaires,

ils doivent apporter une véritable valeur ajoutée, comme des

explications de logiques complexes qui ne sont pas

immédiatement apparentes.

5.Question

Quel rôle joue le test unitaire dans le processus de

refactoring ?
Réponse:Le test unitaire est crucial lors du refactoring car il

garantit que les modifications ne cassent pas la fonctionnalité

existante. Il fournit un filet de sécurité qui permet aux

programmeurs d'apporter des améliorations et des

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

optimisations en toute confiance, rassurés que les régressions

peuvent être immédiatement identifiées. Ce chapitre a

souligné l'importance d'atteindre une couverture de test

complète en tant que prérequis pour un refactoring sûr.

6.Question

Comment le chapitre illustre-t-il le concept de 'la règle du

Boy Scout' ?
Réponse:La règle du Boy Scout suggère que les

programmeurs devraient laisser le code plus propre qu'ils ne

l'ont trouvé. Le chapitre illustre ce principe en s'attaquant

systématiquement à divers aspects de la classe SerialDate,

améliorant sa structure, augmentant sa lisibilité, corrigeant

des bogues et augmentant la couverture de test, contribuant

ainsi à une base de code plus saine pour les développeurs

futurs.

7.Question

Quelle est la signification des métriques de couverture de

test comme celles rapportées par Clover ?
Réponse:Les métriques de couverture de test, telles que

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

celles rapportées par Clover, fournissent des informations sur

la quantité de code testée par les tests, indiquant le risque

potentiel de bogues non détectés. Un pourcentage de

couverture plus élevé suggère généralement une meilleure

confiance dans la fiabilité du code. Le chapitre décrit

comment une compréhension approfondie de la couverture

peut guider les efforts de refactoring en soulignant les

chemins non testés qui nécessitent une attention particulière.

8.Question

Pourquoi est-il problématique que les classes de base

soient conscientes de leurs sous-classes, selon le texte ?
Réponse:Lorsque les classes de base sont conscientes de

leurs sous-classes, cela peut créer un couplage étroit, limitant

la flexibilité et rendant le code plus difficile à maintenir ou à

étendre. Le texte plaide pour l'utilisation de modèles de

conception, comme le modèle de Fabrique Abstraite, pour

isoler les classes de base des détails d'implémentation

spécifiques, permettant des conceptions plus propres et

modulaires.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

9.Question

Que suggère l'auteur sur le nommage des classes et des

méthodes lors du refactoring ?
Réponse:L'auteur souligne que le nommage doit être clair et

intuitif, reflétant avec précision le but et le comportement des

classes et des méthodes. Un bon nommage aide à

comprendre la fonctionnalité du code sans nécessiter de

documentation extensive, promouvant le code

auto-documenté comme un objectif lors des efforts de

refactoring.

10.Question

Comment le processus de refactoring a-t-il contribué à

améliorer spécifiquement la classe SerialDate ?
Réponse:Le processus de refactoring pour la classe

SerialDate a impliqué d'améliorer sa structure, de corriger

des erreurs de conditions aux limites, d'augmenter la

couverture de test d'environ 50 % à environ 85 %, d'éliminer

le code non utilisé et de renommer les méthodes pour plus de

clarté. Ces changements ont collectivement amélioré

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

l'intégrité, l'efficacité et la lisibilité du code, le rendant plus

robuste et plus facile à travailler pour les développeurs.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 16 | 17 Odeurs et Heuristiques| Questions
et réponses

1.Question

Quelle est l'importance d'identifier les odeurs de code

dans un logiciel ?
Réponse:Identifier les odeurs de code est essentiel

pour maintenir un CODER PROPREMENT, car

elles servent d'indicateurs des zones problématiques

dans la base de code qui peuvent conduire à des

bugs et des défauts de conception. S'attaquer à ces

odeurs aide à améliorer la qualité, la maintenabilité

et la lisibilité du code, ce qui conduit à un

développement plus efficace et à une collaboration

plus facile.

2.Question

Pourquoi les commentaires dans le code doivent-ils se

limiter aux notes techniques et à la conception ?
Réponse:Les commentaires doivent se concentrer sur les

notes techniques et les aspects de conception car ils visent à

fournir une clarté sur l'intention et la fonctionnalité du code,

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

plutôt que de stocker des données historiques ou des

informations redondantes qui peuvent encombrer le code et

entraîner de la confusion au fil du temps.

3.Question

Quel est le danger de maintenir du code commenté ?
Réponse:Le code commenté peut devenir obsolète et

déroutant avec le temps, car il devient souvent désuet et

déconnecté du contexte actuel du code. Cela peut induire les

développeurs en erreur en pensant que l'ancienne

fonctionnalité est encore nécessaire, ce qui entraîne un

encombrement accru et augmente la charge cognitive lors de

la lecture du code.

4.Question

Comment les dépendances entre les modules doivent-elles

être gérées selon les principes du CODER

PROPREMENT ?
Réponse:Les dépendances entre les modules doivent être

explicites et physiques plutôt que logiques. Cela signifie que

les modules doivent appeler les méthodes et les données

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

spécifiques dont ils ont besoin auprès de leurs collaborateurs

plutôt que de faire des hypothèses sur leur disponibilité,

réduisant ainsi les dépendances cachées et promouvant des

relations plus claires.

5.Question

Pourquoi est-il important de limiter le nombre

d'arguments qu'une fonction peut prendre ?
Réponse:Limiter le nombre d'arguments garde les fonctions

plus simples et plus faciles à comprendre. Idéalement, une

fonction ne doit pas avoir plus de trois arguments, car des

paramètres excessifs peuvent entraîner de la confusion et

rendre la fonction plus difficile à utiliser et à mémoriser.

6.Question

Qu'est-ce que le principe de la moindre surprise et

comment s'applique-t-il au CODER PROPREMENT ?
Réponse:Le principe de la moindre surprise stipule que le

code doit se comporter d'une manière prévisible pour le

lecteur ou l'utilisateur, en fonction de leurs attentes. Ce

principe améliore la lisibilité et la maintenabilité en

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

garantissant que les fonctions et les classes fonctionnent de

manière conforme aux pratiques communes et aux intuitions.

7.Question

Que signifie le principe DRY et pourquoi est-il crucial

dans le codage ?
Réponse:Le principe DRY signifie 'Don't Repeat Yourself'

(Ne vous répétez pas). Il est crucial car la duplication de code

augmente la charge de maintenance et le potentiel d'erreurs.

En évitant la duplication, les développeurs peuvent créer un

code plus modulaire et adaptable qui peut être réutilisé sans

modification.

8.Question

Que faire du code mort dans un programme ?
Réponse:Le code mort, qui est du code qui n'est jamais

exécuté, doit être complètement retiré de la base de code. Le

garder ajoute un encombrement inutile et peut confondre les

futurs développeurs sur la fonctionnalité prévue du module.

9.Question

Pourquoi les fonctions devraient-elles être conçues pour

ne faire qu'une seule chose ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Les fonctions devraient se concentrer sur une seule

tâche pour renforcer la clarté et la réutilisabilité. Une

fonction à responsabilité unique est plus facile à tester,

déboguer et comprendre, ce qui favorise une meilleure

organisation et maintenabilité du code.

10.Question

Que signifie encapsuler les conditions limites dans le code

?
Réponse:Encapsuler les conditions limites signifie isoler la

logique de traitement des cas particuliers en un seul endroit

plutôt que de disperser des vérifications dans toute la base de

code. Cette approche simplifie la maintenance et réduit la

probabilité d'erreurs lorsque les conditions limites sont

modifiées ou doivent être mises à jour.

11.Question

Quel rôle jouent des noms de variables explicites dans la

lisibilité du code ?
Réponse:Des noms de variables explicites apportent une

clarté sur ce que les variables représentent, rendant le code

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

plus compréhensible d'un coup d'œil. Cela réduit le besoin de

commentaires détaillés et aide les futurs lecteurs du code à

saisir rapidement son but et sa logique.

12.Question

Comment l'utilisation de conventions de nommage

standard contribue-t-elle au CODER PROPREMENT ?
Réponse:L'utilisation de conventions de nommage standard

crée un sentiment de familiarité et de prévisibilité, rendant la

base de code plus facile à naviguer pour les développeurs.

Lorsque le nommage suit des modèles établis, cela réduit

l'ambiguïté et aide à la compréhension, favorisant ainsi la

maintenabilité.

13.Question

Pourquoi est-il important de garder l'interface de tout

module ou classe petite ?
Réponse:Une petite interface limite le nombre de méthodes

exposées aux autres parties du code, diminuant ainsi le

couplage et rendant le module plus facile à utiliser et à

comprendre. Cela réduit les risques de conséquences

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

imprévues des modifications et favorise des interactions plus

stables.

14.Question

Que signifie le conseil de 'rendre les dépendances logiques

physiques' en ce qui concerne la structure du code ?
Réponse:Cela signifie que chaque module doit déclarer

explicitement ses dépendances, plutôt que de faire des

hypothèses sur ce que d'autres modules fournissent. Cette

approche améliore la clarté, diminue les dépendances cachées

et facilite la maintenance et le refactoring.

Chapitre 17 | A : Concurrence II| Questions et
réponses

1.Question

Quel est l'avantage principal d'utiliser des threads dans

une application client/serveur ?
Réponse:L'utilisation de threads permet au serveur

de gérer plusieurs requêtes de clients en parallèle, ce

qui peut améliorer considérablement le débit,

notamment lors des opérations liées aux

entrées/sorties. Pendant qu'un thread attend

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

l'achèvement des opérations d'E/S, un autre thread

peut traiter une autre requête de client, optimisant

ainsi l'utilisation du processeur.

2.Question

Quelles sont les principales considérations de

performance lors du test d'une application client/serveur

?
Réponse:La performance doit être validée par des tests qui

vérifient les temps d'achèvement des requêtes clients, par

exemple en s'assurant que toutes les requêtes se terminent

dans un délai donné. De plus, il est essentiel de comprendre

si l'application est liée aux E/S ou au processeur, car cela

détermine comment améliorer la performance.

3.Question

Pourquoi est-il problématique de ne pas avoir de limite

sur le nombre de threads créés par un serveur ?
Réponse:Sans limites, un serveur peut générer trop de

threads, ce qui peut épuiser les ressources système et

dégrader la performance. Les systèmes conçus pour de

nombreux utilisateurs doivent gérer l'utilisation des threads

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

par le biais d'une politique de gestion des threads contrôlée,

évitant ainsi la surcharge du serveur.

4.Question

Comment le 'Principe de Responsabilité Unique' peut-il

être appliqué pour améliorer la conception du serveur

dans un contexte multithreadé ?
Réponse:En séparant les préoccupations, telles que la gestion

des connexions de sockets, le traitement des clients et la

planification des threads, les développeurs peuvent créer une

base de code plus propre et plus facile à maintenir. Cela

permet des modifications plus simples dans des domaines

spécifiques (comme la politique de threading) sans affecter

des parties non liées du code.

5.Question

Quelle est une cause courante de blocage dans les

applications multithreadées, et comment peut-on l'éviter

?
Réponse:Le blocage se produit lorsque des threads sont

coincés en attente de ressources détenues les uns par les

autres. On peut y remédier en garantissant un ordre cohérent

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

d'acquisition des ressources parmi tous les threads, en

utilisant des délais d'attente, ou en appliquant des

mécanismes de verrouillage appropriés qui minimisent la

possibilité de conditions d'attente circulaires.

6.Question

Quelles stratégies de test peuvent révéler des problèmes

de threading dans le code ?
Réponse:Des stratégies de test telles que les tests de Monte

Carlo (exécution répétée de tests dans des conditions variées)

et l'assurance d'exécuter des tests sur différents matériels et

charges peuvent augmenter les chances de déceler des

problèmes de threading. De plus, l'utilisation d'outils

spécialisés (comme ConTest) peut améliorer la détection de

bogues concurrentiels.

7.Question

Quel est l'effet de ne pas utiliser de synchronisation lors

de l'accès à un état mutable partagé ?
Réponse:Ne pas utiliser de synchronisation peut entraîner des

conditions de course où plusieurs threads accèdent et

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

modifient des données partagées sans coordination,

entraînant un comportement de programme incohérent ou

inattendu. Dans un cas spécifique, plusieurs threads

pourraient écraser des modifications, conduisant à une perte

de données ou à des résultats incorrects.

8.Question

Comment le framework Executor de Java améliore-t-il la

gestion des threads ?
Réponse:Le framework Executor de Java simplifie la gestion

des threads en permettant aux développeurs de créer un pool

de threads qui gère efficacement l'exécution des tâches. Il

prévient la surcharge de la création et de la destruction

fréquentes de threads et aide à gérer des volumes plus

importants de tâches concurrentes plus gracieusement.

9.Question

Qu'est-ce que les opérations atomiques et pourquoi

sont-elles critiques en programmation concurrente ?
Réponse:Les opérations atomiques sont des opérations qui se

terminent en une seule étape du point de vue des autres

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

threads, ce qui signifie qu'elles ne peuvent pas être

interrompues. Comprendre les opérations atomiques est

crucial en programmation concurrente pour éviter

l'incohérence des données causée par des modifications

simultanées.

10.Question

Comment l'exemple démontre-t-il les différences entre les

tâches liées aux E/S et celles liées au CPU dans un

environnement concurrent ?
Réponse:L'exemple met en contraste les tâches liées aux E/S,

où les temps d'attente pour les ressources externes peuvent

être superposés aux temps de traitement d'autres tâches, avec

les tâches liées au CPU, où des threads supplémentaires

n'augmentent pas la performance en raison de la limite de

traitement par le CPU.

Chapitre 18 | B: org.jfree.date.SerialDate| Questions
et réponses

1.Question

Quel est le but principal de la classe SerialDate dans la

manipulation des dates ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:La classe SerialDate est conçue pour

fournir une représentation simple et immuable des

dates, facilitant leur manipulation sans nécessiter la

précision d'une java.util.Date, souvent trop détaillée

pour de nombreuses applications. Elle permet aux

utilisateurs de travailler avec des dates représentant

des journées entières tout en abstraisant les détails

d'implémentation.

2.Question

Pourquoi l'utilisation de java.util.Date peut-elle parfois

être trop complexe ?
Réponse:java.util.Date offre un haut niveau de précision,

jusqu'aux millisecondes, ce qui est superflu lorsque l'objectif

est simplement de représenter un jour particulier. Les

utilisateurs peuvent se retrouver à gérer des complexités liées

aux fuseaux horaires et à l'heure de la journée alors qu'ils

s'intéressent uniquement à la date elle-même.

3.Question

Comment la classe SerialDate maintient-elle la

compatibilité avec le système de dates d'Excel ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:La classe SerialDate maintient la compatibilité avec

Excel en utilisant un système de numérotation similaire où le

numéro de série pour les dates commence le 1er janvier

1900. Elle reconnaît un bug délibéré dans Excel qui

considère incorrectement 1900 comme une année bissextile,

permettant ainsi une cohérence dans les calculs de dates avec

des applications comme Excel.

4.Question

Quelles considérations sont prises en compte dans la

conception de la classe SerialDate pour éviter les erreurs

?
Réponse:La classe SerialDate intègre des validations pour

garantir que les dates se situent dans une plage définie (de

1900 à 9999) et tenait compte des années bissextiles. Elle

met également en œuvre des méthodes pour convertir entre

différentes représentations de dates et fournir des utilitaires

utiles, comme la vérification des codes valides pour les mois

et les jours de la semaine.

5.Question

Pourquoi l'immuabilité est-elle une caractéristique

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

significative de la classe SerialDate ?
Réponse:L'immuabilité garantit que, une fois qu'une instance

de SerialDate est créée, elle ne peut pas être modifiée. Cette

caractéristique empêche les modifications accidentelles des

données, rendant la classe plus sûre et plus prévisible à

utiliser. Elle s'aligne bien avec les principes de la

programmation fonctionnelle et renforce la fiabilité des

manipulations de dates.

6.Question

Comment le constructeur de la classe SerialDate gère-t-il

les entrées de date invalides ?
Réponse:Le constructeur de SerialDate lance une

IllegalArgumentException lorsque des dates invalides sont

fournies, garantissant que seules des dates valides sont

acceptées et que l'intégrité des objets date est maintenue tout

au long de leur utilisation.

7.Question

Quel est le but des différentes méthodes 'get' dans la

classe SerialDate ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Les méthodes 'get' sont destinées à récupérer des

composants spécifiques d'une date, tels que l'année, le mois

et le jour du mois, permettant aux utilisateurs d'obtenir

facilement et de manipuler ces composants individuels pour

diverses fins.

8.Question

Comment la classe SerialDate facilite-t-elle l'ajout de

jours, de mois ou d'années à une date donnée ?
Réponse:La classe SerialDate inclut des méthodes statiques

qui permet aux utilisateurs de créer de nouvelles instances de

SerialDate avec des dates ajustées en ajoutant un nombre

spécifié de jours, de mois ou d'années à une date existante,

illustrant sa praticité pour la manipulation des dates.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 19 | C : Références croisées des
heuristiques| Questions et réponses

1.Question

Quel est le principal objectif des références croisées des

mauvaises odeurs et des heuristiques dans CODER

PROPREMENT ?
Réponse:Les références croisées servent de guide

pour identifier et relier les différentes mauvaises

odeurs de code et les heuristiques associées,

permettant aux développeurs d'améliorer

systématiquement la qualité de leur code. En se

référant à cet appendice, les développeurs peuvent

cibler des problèmes de programmation spécifiques

et appliquer des heuristiques établies pour les

résoudre efficacement.

2.Question

Comment la compréhension des mauvaises odeurs de

code bénéficie-t-elle à un développeur ?
Réponse:Comprendre les mauvaises odeurs de code permet

aux développeurs de reconnaître des schémas problématiques

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

dans leur code, ce qui peut entraîner des problèmes de

maintenance, des bugs et une dette technique. En étant

conscients de ces odeurs, ils peuvent proactivement

refactoriser et améliorer le code, ce qui aboutit à des logiciels

plus propres, plus efficaces et plus gérables.

3.Question

Pouvez-vous expliquer l'importance d'une heuristique

particulière liée à une mauvaise odeur de code ?
Réponse:Par exemple, une mauvaise odeur de code courante

est "Méthode Longue", qui se réfère à des méthodes

excessivement longues et complexes. L'heuristique qui y est

associée pourrait suggérer de diviser la méthode en méthodes

plus petites et plus ciblées. Ce changement améliore la

lisibilité, facilite les tests unitaires et augmente la

maintenabilité globale du code.

4.Question

Que doit faire un développeur s'il identifie une mauvaise

odeur de code dans son projet ?
Réponse:Lorsqu'un développeur identifie une mauvaise

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

odeur de code, il doit analyser la cause sous-jacente,

rechercher des heuristiques liées qui traitent la mauvaise

odeur spécifique, puis mettre en œuvre des techniques de

refactorisation qui respectent ces heuristiques. Ce processus

permet non seulement de nettoyer le code, mais aussi de

favoriser une meilleure pratique de codage dans l'ensemble.

5.Question

Comment le fait de se référer continuellement aux

heuristiques peut-il affecter la qualité du code à long

terme ?
Réponse:Se référer continuellement aux heuristiques pendant

le codage favorise une approche disciplinée du

développement logiciel, menant à moins de problèmes de

dette technique et à une base de code plus durable. Cela

cultive l'habitude d'écrire du code propre, ce qui peut réduire

considérablement le temps passé à déboguer et à maintenir à

l'avenir.

6.Question

Que peuvent apprendre les développeurs en comparant

différentes mauvaises odeurs de code et leurs heuristiques

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

associées ?
Réponse:Les développeurs peuvent apprendre la nature

interconnectée des différents problèmes dans les pratiques de

codage. En comparant différentes odeurs et leurs

heuristiques, ils peuvent voir comment s'attaquer à un

problème pourrait atténuer d'autres, promouvant une

approche holistique du codage qui valorise la qualité et la

maintenabilité.

Chapitre 20 | Index| Questions et réponses

1.Question

Quel est l'impact du 'mauvais code' dans un projet

logiciel ?
Réponse:Le mauvais code a un effet dégradant,

entraînant une complexité accrue et des coûts de

maintenance plus élevés. Il réduit la productivité et

peut décourager le moral des développeurs. Un

exemple clair est lorsqu'un développeur fait face à

un bug dans un mauvais code ; le corriger peut

nécessiter de trier une logique confuse et une

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

structure peu claire, consommant un temps et des

ressources précieux.

2.Question

Comment les commentaires dans le code peuvent-ils

améliorer ou nuire à la qualité du code ?
Réponse:De bons commentaires clarifient l'intention et

fournissent du contexte, améliorant ainsi la compréhension,

tandis que de mauvais commentaires peuvent induire en

erreur, fournir des informations redondantes ou rendre le

code plus difficile à lire. Par exemple, un commentaire clair

expliquant pourquoi une solution non évidente a été choisie

peut aider les futurs mainteneurs, tandis qu'un commentaire

qui indique simplement ce qui est déjà évident dans le code

ajoute souvent du désordre.

3.Question

Quel rôle jouent les 'tests' dans l'assurance de la qualité

du code ?
Réponse:Les tests sont essentiels pour maintenir le CODER

PROPREMENT car ils aident à détecter les erreurs tôt, à

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

vérifier la fonctionnalité et à offrir une sécurité lors des

refactorisations. Des tests clairs et bien structurés peuvent

mettre en évidence les faiblesse du code et garantir que les

modifications futures ne cassent pas la fonctionnalité

existante.

4.Question

Quelle est la définition du code propre selon 'Clean Code'

?
Réponse:Le CODER PROPREMENT est défini comme un

code simple, facile à lire et à maintenir. Il reflète l'intention,

est bien organisé et est dépourvu de complexité inutile.

L'essence du CODER PROPREMENT est d'assurer que les

développeurs peuvent facilement comprendre et travailler

avec le code, réduisant ainsi efficacement le risque de bugs et

améliorant la qualité globale du logiciel.

5.Question

Pouvez-vous expliquer le concept de 'séparation des

préoccupations' ?
Réponse:La séparation des préoccupations est un principe de

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

conception qui promeut l'organisation du code en sections

distinctes, chacune responsable d'un aspect spécifique de la

fonctionnalité. Par exemple, une classe qui gère les

interactions avec la base de données ne devrait pas gérer la

logique de l’interface utilisateur. Cela rend chaque section

plus facile à comprendre, à maintenir et à tester, résultant en

une architecture d'application plus robuste.

6.Question

Pourquoi les noms sont-ils importants dans le CODER

PROPREMENT ?
Réponse:Les noms sont cruciaux car ils affectent directement

la lisibilité et la maintenabilité du code. Des noms descriptifs

et révélateurs d'intention aident à réduire la charge cognitive

des développeurs. Par exemple, une méthode nommée

'calculerPrixTotal()' est beaucoup plus claire que 'faireCalc()'.

Une bonne nomination minimise le besoin de commentaires

et d'explications, permettant aux autres de comprendre

rapidement le code.

7.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Comment la complexité affecte-t-elle la maintenance du

code ?
Réponse:Le code complexe augmente la charge cognitive sur

les développeurs, rendant plus difficile la compréhension et

la modification. Cela peut donner lieu à des bugs et rendre

l'ajout de fonctionnalités plus difficile, car les développeurs

peuvent ne pas saisir comment différentes parties

interagissent. Par conséquent, la gestion de la complexité par

la simplification du code et l'adhésion à des principes tels que

'faire une seule chose' aide à faciliter la maintenance.

8.Question

Que peut-on faire pour éviter les 'odeurs de code' et

promouvoir des pratiques de programmation propres ?
Réponse:Pour éviter les odeurs de code et promouvoir des

pratiques de programmation propres, les développeurs

peuvent mettre en œuvre des pratiques telles que le

refactoring régulier du code, l'adhésion à des normes de

codage solides, l'écriture de tests complets et l'utilisation

d'outils pour identifier les problèmes potentiels. La

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

sensibilisation aux motifs et principes de codage—comme la

règle du Boy Scout, qui dit aux développeurs de laisser le

code plus propre qu'ils ne l'ont trouvé—aide à garantir une

qualité de code continue.

9.Question

Quel est le 'Principe de responsabilité unique' (SRP) et

pourquoi est-il important ?
Réponse:Le Principe de responsabilité unique stipule qu'une

classe ne doit avoir qu'une seule raison de changer, ce qui

signifie qu'elle ne doit avoir qu'un seul emploi ou une seule

responsabilité. Ce principe est vital car il conduit à un code

plus compréhensible et plus maintenable. Par exemple, une

classe gérant à la fois l'accès aux données et le rendu de

l'interface utilisateur peut devenir étroitement couplée et plus

difficile à modifier, tandis que la séparation de ces

préoccupations permet des mises à jour individuelles sans

affecter l'autre.

10.Question

Comment le 'développement piloté par les tests' (TDD)

peut-il influencer la qualité du code ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Le développement piloté par les tests influence

positivement la qualité du code en encourageant les

développeurs à écrire des tests avant le code réel. Cette

approche conduit à une meilleure conception, car les

développeurs doivent considérer comment leur code sera

testé, souvent en résultant en conceptions plus simples et plus

modulaires. Elle garantit que chaque fonctionnalité est

validée, menant finalement à un code plus propre et plus

fiable.

Chapitre 21 | Introduction Préalable| Questions et
réponses

1.Question

Quelle est la définition du professionnalisme en tant que

programmeur selon Robert C. Martin?
Réponse:Le professionnalisme englobe les attitudes,

les disciplines et les actions qui définissent

l'approche d'un programmeur envers son travail.

Cela implique de viser une amélioration continue, de

prendre la responsabilité de ses actions, de s'engager

dans un apprentissage tout au long de la vie, et de

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

maintenir des standards éthiques élevés.

2.Question

Comment les premières expériences peuvent-elles

façonner le développement professionnel d'un

programmeur?
Réponse:Les premières expériences, qu'elles soient positives

ou négatives, peuvent façonner significativement la

compréhension du professionnalisme d'un programmeur. Par

exemple, Martin partage que ses erreurs de débutant –

comme démissionner impulsivement sans autre emploi en

vue – ont été des moments d'apprentissage critiques qui lui

ont enseigné l'importance de l'humilité et de la prise de

décision réfléchie.

3.Question

Quel rôle joue l'humilité dans la professionnalisation d'un

programmeur?
Réponse:L'humilité est cruciale pour la croissance

professionnelle car elle permet aux programmeurs de

reconnaître leurs erreurs, d'en tirer des leçons et de chercher

des conseils si nécessaire. Martin raconte comment il a dû

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

'manger son chapeau' en postulant à nouveau pour son

emploi après avoir démissionné sur un coup de tête,

soulignant que reconnaître ses limites est une étape clé dans

le développement professionnel.

4.Question

Comment les conséquences des actions influencent-elles la

croissance professionnelle dans le domaine de la

programmation?
Réponse:Les conséquences, surtout des erreurs commises au

travail, servent de puissantes leçons qui peuvent propulser la

croissance professionnelle. Par exemple, Martin évoque avoir

été licencié pour avoir manqué des délais critiques, ce qui lui

a enseigné l'importance de la communication et de la

responsabilité. Tirer des leçons de ces expériences aide à

éviter des problèmes similaires à l'avenir.

5.Question

De quelle manière les erreurs partagées entre pairs

peuvent-elles impacter la carrière d'un programmeur?
Réponse:Les erreurs partagées peuvent conduire à un

apprentissage et à une amélioration mutuels parmi les

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

programmeurs. L'expérience de Martin, où il a sans le savoir

causé le licenciement d'autres personnes, illustre l'importance

du leadership et de l'impact que les décisions d'un individu

peuvent avoir sur une équipe, soulignant que les

programmeurs doivent être conscients de leurs

responsabilités envers les autres.

6.Question

Quelle importance Robert C. Martin accorde-t-il à

l'apprentissage continu en programmation?
Réponse:L'apprentissage continu est vital pour maintenir le

professionnalisme en programmation. Martin souligne que le

paysage technologique évolue constamment, et se tenir

informé par un apprentissage persistant permet aux

programmeurs de s'adapter et d'améliorer leurs compétences,

augmentant ainsi leur valeur dans l'industrie.

7.Question

Comment la responsabilité personnelle peut-elle façonner

l'avenir de la carrière d'un programmeur?
Réponse:La responsabilité personnelle est essentielle pour la

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

croissance et le succès dans la carrière d'un programmeur.

Reconnaître ses propres erreurs, comme l'a fait Martin,

favorise la confiance et le respect entre collègues et

employeurs, ouvrant la voie à des opportunités et des

promotions futures. Prendre la responsabilité de son travail

garantit que les programmeurs peuvent contribuer

efficacement à leurs équipes.

8.Question

Quel message global Robert C. Martin transmet-il sur le

parcours pour devenir un programmeur professionnel?
Réponse:Le parcours pour devenir un programmeur

professionnel est marqué par l'apprentissage continu,

l'humilité et la réflexion sur soi. C'est un chemin défini par

des succès et des échecs, chaque expérience servant de leçon

cruciale pour développer le professionnalisme et améliorer

ses compétences dans le recrutement et l'exécution des tâches

de programmation.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 22 | 1 Professionnalisme| Questions et
réponses

1.Question

Que signifie vraiment le professionnalisme dans le

développement logiciel ?
Réponse:Le professionnalisme dans le

développement logiciel signifie prendre la

responsabilité de son travail, être accountable de ses

erreurs et prioriser la qualité de son code. Cela

implique un engagement non seulement à respecter

les délais, mais aussi à s'assurer que le logiciel

fonctionne correctement et est maintenable. Il s'agit

d'équilibrer la fierté avec la volonté de s'excuser et

d'apprendre de ses erreurs.

2.Question

Comment un développeur logiciel peut-il prendre la

responsabilité de son travail ?
Réponse:Un développeur peut prendre la responsabilité en

testant soigneusement son code avant sa publication, en

s'assurant qu'il fonctionne comme prévu. Il doit être proactif

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

pour détecter les erreurs, limiter les bugs et travailler en

continu pour améliorer à la fois la fonctionnalité et la

structure de son code. De plus, il devrait s'excuser et

apprendre de ses erreurs lorsqu'elles se produisent.

3.Question

Quelle est la signification du 'ne pas nuire' dans les

pratiques de codage ?
Réponse:'Ne pas nuire' signifie que les développeurs logiciels

doivent s'efforcer d'éviter de créer des bugs ou des échecs qui

peuvent impacter les utilisateurs ou les systèmes de manière

négative. Tout comme les médecins prêtent un serment de

prévenir les dommages, les développeurs doivent se fixer le

même standard lors de la création de logiciels, garantissant

que ce qu'ils livrent est aussi fiable et exempt de bugs que

possible.

4.Question

Quel rôle joue l'apprentissage continu dans le fait d'être

un développeur professionnel ?
Réponse:L'apprentissage continu est crucial pour un

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

développeur professionnel, car la technologie et les

méthodologies évoluent constamment. Les développeurs

doivent rester à jour sur les nouveaux langages, frameworks

et meilleures pratiques. Cela améliore non seulement leurs

compétences, mais les maintient également pertinents dans

un secteur en évolution rapide.

5.Question

Comment les professionnels peuvent-ils s'assurer que leur

code reste flexible et maintenable ?
Réponse:Pour garder le code flexible et maintenable, les

professionnels doivent s'engager dans un refactoring régulier

et adopter la pratique d'apporter de petites améliorations

chaque fois qu'ils travaillent sur du code. Ils doivent

également s'assurer que leur code est conçu avec des tests à

l'esprit, en utilisant des pratiques comme le développement

dirigé par les tests (TDD) pour faciliter les changements

futurs.

6.Question

Pourquoi est-il important de connaître son domaine en

tant que développeur logiciel ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Comprendre son domaine permet à un développeur

de produire des solutions qui répondent réellement aux

besoins des utilisateurs et aux objectifs commerciaux. Cela

aide à reconnaître les erreurs de spécification et garantit que

le logiciel est en accord avec les pratiques et exigences de

l'industrie, conduisant à une meilleure qualité et moins de

malentendus avec les parties prenantes.

7.Question

Quel état d'esprit un développeur professionnel devrait-il

avoir envers son employeur ?
Réponse:Un développeur professionnel devrait s'aligner sur

les objectifs de son employeur et considérer ses problèmes

comme les siens. Cela signifie rechercher activement des

solutions qui répondent aux besoins de l’employeur et

collaborer pour développer un logiciel qui contribue au

succès de l'organisation.

8.Question

Quel rôle joue l'humilité dans le professionnalisme pour

les développeurs logiciels ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:L'humilité est cruciale dans le professionnalisme car

elle permet aux développeurs de reconnaître leurs limites et

d'apprendre de leurs erreurs. Reconnaître que la

programmation implique des risques et que personne n'est à

l'abri des erreurs favorise un environnement collaboratif où le

partage des connaissances et des expériences améliore la

croissance et l'apprentissage de l'équipe.

9.Question

Quelles pratiques les développeurs peuvent-ils adopter

pour maintenir leurs compétences au fil du temps ?
Réponse:Les développeurs peuvent maintenir leurs

compétences par une pratique constante, comme s'engager

dans des katas de code, collaborer avec des pairs, assister à

des ateliers ou des conférences, mentorant d'autres, et en

réservant du temps personnel pour explorer de nouveaux

outils et technologies.

10.Question

Pourquoi la collaboration est-elle importante dans le

développement logiciel ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:La collaboration permet aux développeurs de

partager des idées, de résoudre des problèmes plus

rapidement et de produire des logiciels de meilleure qualité.

Travailler ensemble encourage l'apprentissage mutuel, réduit

les erreurs et favorise un sentiment de communauté qui

conduit à de meilleurs résultats globaux.

Chapitre 23 | 2 Dire Non| Questions et réponses

1.Question

Quelle est l'importance de dire non à son patron et

pourquoi est-ce considéré comme un acte professionnel ?
Réponse:Dire non à son patron est crucial car cela

reflète le professionnalisme. Les professionnels sont

censés résister aux attentes irréalistes. Il ne s'agit

pas simplement de suivre des ordres ; il est question

de s'assurer que le travail effectué est réalisable et

conforme aux objectifs globaux de qualité et de

délais. Dire non permet de négocier et peut conduire

à un meilleur résultat pour les projets.

2.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Quelles sont les conséquences de ne pas dire non lorsque

l'on est sous pression de la part de la direction ?
Réponse:Ne pas dire non peut entraîner des conséquences

désastreuses, comme le montre l'histoire d'un projet précipité

qui a abouti à un système défectueux incapable de répondre

aux attentes des utilisateurs, nuisant tant aux employés qu'à

l'organisation. Les professionnels doivent évaluer les délais

de projet de manière réaliste ; sinon, ils risquent de créer un

travail de mauvaise qualité qui ne satisfera finalement pas les

clients.

3.Question

Comment la confrontation peut-elle être bénéfique dans

les relations professionnelles, comme entre les

programmeurs et les managers ?
Réponse:La confrontation peut mener à une communication

plus claire et à de meilleurs résultats de projet. Lorsque les

deux parties expriment de manière assertive leurs besoins et

leurs limites, elles peuvent négocier une solution qui aligne

les objectifs du projet. Ce rôle d'adversaire aide à prévenir les

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

malentendus et garantit que les capacités de l'équipe et les

besoins de la direction sont pris en compte.

4.Question

Quelles stratégies pouvez-vous adopter pour dire non de

manière efficace tout en maintenant une relation

professionnelle ?
Réponse:Un style de communication clair et assertif est

essentiel. Par exemple, énoncez les faits et les délais estimés

de manière sans équivoque. Utilisez des exemples ou des

expériences passées pour appuyer votre point de vue. Il est

également bénéfique de proposer des solutions alternatives

ou des compromis qui préservent encore les standards de

qualité, montrant qu'en disant non, vous restez néanmoins

dédié au succès du projet.

5.Question

Pourquoi l'expression 'Je vais essayer' est-elle considérée

comme un signe d'improfessionnalisme dans ce contexte ?
Réponse:Dire 'je vais essayer' implique de l'incertitude et

peut suggérer que vous ne vous engagez pas pleinement dans

la tâche. Cela indique que vous ne fournissez peut-être pas le

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

meilleur de vous-même ou que vous n'avez pas planifié pour

réussir. Les professionnels devraient énoncer clairement leurs

capacités au lieu de tergiverser ; sinon, ils risquent de se

mettre en échec en promettant quelque chose qu'ils ne

peuvent pas livrer.

6.Question

Quel rôle la communication joue-t-elle pour éviter les

pièges de dire trop souvent oui ?
Réponse:Une communication efficace est essentielle pour

établir des attentes réalistes. En discutant ouvertement des

délais, des capacités et des besoins en ressources, les

membres de l'équipe peuvent créer une compréhension

mutuelle qui favorise une planification réaliste. S'assurer que

tout le monde est sur la même longueur d'onde minimise la

tentation de trop promettre et permet une approche plus

collaborative de la gestion de projet.

7.Question

Comment la quête de reconnaissance personnelle

peut-elle mener à un comportement non professionnel ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Lorsque les individus privilégient la reconnaissance

personnelle au détriment de la qualité réelle de leur travail,

ils peuvent compromettre leurs standards pour satisfaire des

exigences irréalistes. Le désir d'être vu comme un héros peut

mener à accepter des délais ou des périmètres impossibles,

cultivant ainsi des pratiques de codage non professionnelles

et résultant finalement en échec.

8.Question

En réfléchissant à ce chapitre, comment un développeur

peut-il équilibrer assertivité et travail d'équipe ?
Réponse:Un développeur peut équilibrer assertivité et travail

d'équipe en étant honnête sur ce qui est réalisable et en

plaidant pour des délais réalistes tout en restant ouvert à la

collaboration sur les solutions. Encourager un dialogue où les

objectifs du développeur et du manager sont discutés peut

créer un environnement plus harmonieux où les deux parties

se sentent entendues et respectées.

9.Question

Quelle est la relation entre le fait de dire non et

l'obtention du meilleur résultat possible pour un projet ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Dire non lorsque c'est nécessaire garantit que les

objectifs du projet sont réalistes et atteignables. En affirmant

les limites, vous protégez la qualité du travail et le moral

général de l'équipe. Cet engagement à maintenir des normes

peut conduire à un résultat plus réussi, car toutes les parties

sont claires sur les attentes et les délais.

10.Question

Pouvez-vous donner un exemple de comment

communiquer un non dans un contexte de projet ?
Réponse:Bien sûr ! Si un manager demande une

fonctionnalité pour demain, un développeur pourrait

répondre : 'J'apprécie l'urgence, mais je dois être transparent :

en raison de la complexité de la fonctionnalité, il me faudra

au moins trois jours pour la livrer correctement.

Pouvons-nous discuter des aspects essentiels à présenter

immédiatement, ou si nous pouvons ajuster le délai pour une

livraison complète ?' Cette approche fait un non ferme tout

en invitant à la négociation.

Chapitre 24 | 3 Dire Oui| Questions et réponses

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

1.Question

Que signifie vraiment s'engager à quelque chose ?
Réponse:Un véritable engagement implique de dire

que vous ferez quelque chose, de le signifier

sincèrement et de tenir cette promesse. Cela

nécessite une communication claire, un sens des

responsabilités personnelles et la mise en place de

délais précis pour l'achèvement.

2.Question

Comment pouvons-nous reconnaître un manque

d'engagement chez les autres ?
Réponse:Un manque d'engagement se manifeste souvent par

un langage vague tel que 'besoin', 'devrait', 'espérer' et

'faisons', qui implique que le locuteur ne prend pas l'entière

responsabilité de la tâche.

3.Question

À quoi ressemble une déclaration d'engagement forte ?
Réponse:Une déclaration d'engagement forte exprime

clairement l'action que vous allez entreprendre ainsi qu'une

date limite spécifique. Par exemple, 'Je vais terminer ceci

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

d'ici mardi' ne laisse aucune ambiguïté.

4.Question

Que devez-vous faire si des problèmes imprévus

surviennent qui pourraient vous empêcher de respecter

un engagement ?
Réponse:Vous devez communiquer tôt et honnêtement sur le

problème potentiel. En soulevant les problèmes dès qu'ils

surviennent, vous permettez à votre équipe de réévaluer et

d'ajuster les priorités ou les responsabilités.

5.Question

Pourquoi le changement de langage est-il important lors

de la prise d'engagements ?
Réponse:Modifier le langage pour refléter la certitude et la

responsabilité personnelle favorise la transparence et la

confiance. Cela clarifie ce que vous pouvez réaliser de

manière réaliste, établissant ainsi un ton pour la

responsabilité.

6.Question

Comment pouvez-vous faire face à la pression de changer

d'engagements ou de normes au travail ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Un professionnel doit maintenir ses normes et ne

pas transiger sur la qualité. En cas de pression, expliquez

pourquoi certaines pratiques sont essentielles pour le succès

du projet et explorez des solutions alternatives sans sacrifier

la qualité.

7.Question

Quelle est l'importance de dire 'oui' de manière réfléchie

dans un environnement professionnel ?
Réponse:Dire 'oui' de manière réfléchie peut améliorer votre

réputation en tant que membre fiable de l'équipe qui respecte

ses obligations. Cela démontre une attitude responsable et un

engagement envers la qualité, ce qui peut favoriser de

meilleures dynamiques d'équipe et le succès des projets.

8.Question

Comment le concept de 'essayer' entrave-t-il une

communication efficace ?
Réponse:Utiliser des termes comme 'essayer' peut créer de

l'ambiguïté et miner la confiance. Cela suggère une

incertitude et un manque de responsabilité, tandis qu'un

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

engagement clair envers un résultat spécifique améliore la

transparence.

9.Question

Quel est un exemple de professionnel gérant une demande

irréaliste d'un manager ?
Réponse:Dans le scénario où un manager insiste sur un délai

serré, un professionnel doit évaluer ses capacités, confirmer

honnêtement ses limites et proposer un calendrier réaliste,

comme l'a fait Peter dans l'histoire.

10.Question

Pourquoi est-il important de différencier entre la

responsabilité personnelle et les dépendances de l'équipe

lors de la prise d'engagements ?
Réponse:Reconnaître ce que vous pouvez contrôler par

rapport à ce qui dépend des autres vous permet de formuler

des engagements réalistes. Vous pouvez toujours soutenir le

projet en vous engageant dans des actions qui contribuent à

l'objectif tout en étant clair sur la dépendance envers les

autres.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 25 | 4 Codage| Questions et réponses

1.Question

Quelle est l'importance de développer un sens de l'erreur

en programmation ?
Réponse:Développer un sens de l'erreur est crucial

car cela permet à un programmeur d'identifier et de

rectifier rapidement les erreurs, améliorant ainsi

non seulement la qualité du code mais aussi

l'apprentissage tiré de ces erreurs. Cette compétence

favorise une boucle de rétroaction plus rapide,

essentielle pour maîtriser la programmation et

maintenir la confiance.

2.Question

Comment la fatigue affecte-t-elle la performance en

codage ?
Réponse:La fatigue a un impact néfaste sur la performance

en codage, comme le montrent des anecdotes personnelles de

codage à 3 heures du matin, entraînant de mauvaises

décisions de conception. Cela illustre l'importance de

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

s'assurer d'un repos suffisant et de maintenir un haut niveau

de vivacité mentale pour éviter les erreurs et créer un code

efficace.

3.Question

Pourquoi maintenir son attention et sa concentration

est-il vital en codage ?
Réponse:Maintenir son attention et sa concentration est vital

en codage car la programmation nécessite de jongler avec de

multiples détails complexes—comme comprendre le

problème, respecter les principes d'ingénierie et assurer la

lisibilité—simultanément. Les distractions peuvent entraîner

des erreurs qui rendent nécessaires des corrections, entraînant

une perte de temps et de ressources.

4.Question

Qu'est-ce que la 'Zone' et pourquoi les programmeurs

doivent-ils s'en méfier ?
Réponse:La 'Zone' fait référence à un état de

hyper-focalisation où les programmeurs se sentent

incroyablement productifs. Cependant, cela peut être

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

trompeur car les décisions prises dans cet état manquent

souvent d'une perspective plus large, conduisant à des erreurs

qui nécessitent des corrections ultérieures. Prendre du recul

et s'engager dans des discussions ou des pauses créatives peut

préserver la clarté et améliorer la qualité du codage.

5.Question

Quelles stratégies peuvent être utilisées pour gérer les

inquiétudes et les distractions en codage ?
Réponse:Pour gérer les inquiétudes et les distractions, les

stratégies comprennent la répartition d'un temps dédié pour

aborder les problèmes personnels en dehors des heures de

travail, l'utilisation de la programmation en binôme pour

maintenir le contexte après des interruptions, et comprendre

quand se déconnecter du codage pour permettre à

l'inconscient de résoudre les problèmes.

6.Question

Comment les pratiques collaboratives améliorent-elles la

performance en programmation ?
Réponse:Les pratiques collaboratives, comme la

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

programmation en binôme et le mentorat, améliorent la

performance en offrant de nouvelles perspectives, en

favorisant la résolution efficace de problèmes, et en

garantissant un partage des connaissances entre les membres

de l'équipe, ce qui est essentiel compte tenu de la complexité

de la programmation et de la nécessité d'une communication

claire.

7.Question

Quel rôle l'état mental d'un programmeur joue-t-il dans

son efficacité ?
Réponse:L'état mental d'un programmeur affecte

significativement son efficacité ; le stress, les inquiétudes ou

la fatigue peuvent entraver la concentration et la créativité.

Trouver des moyens de gérer les défis personnels et s'engager

dans des pratiques réparatrices, comme prendre des pauses et

maintenir un mode de vie sain, peut conduire à une

productivité accrue et à une meilleure qualité de code.

8.Question

Quelle est l'approche recommandée pour gérer les délais

de projet ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Pour gérer efficacement les délais de projet, il est

conseillé d'estimer les délais de manière réaliste avec des

scénarios optimistes, nominaux et pessimistes, de

communiquer de manière transparente avec les parties

prenantes et d'éviter les pièges de l' 'espoir' qui peuvent

entraîner des délais manqués. L'adaptabilité et la clarté dans

les plans sont essentielles pour l'intégrité professionnelle.

9.Question

Comment l'apport créatif peut-il prévenir le blocage de

l'écrivain en programmation ?
Réponse:L'apport créatif provenant de diverses sources,

comme la lecture, l'exploration de différents genres et la

participation à des activités qui stimulent l'esprit, peut briser

le blocage de l'écrivain. S'engager avec des idées diverses

encourage la créativité et aide les programmeurs à connecter

plus efficacement les concepts lors du codage.

10.Question

Quelles sont les responsabilités éthiques des

programmeurs concernant l'aide aux autres ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Les programmeurs ont une responsabilité éthique

d'aider leurs pairs. La collaboration non seulement améliore

l'apprentissage et la résolution de problèmes, mais contribue

également à un environnement de travail solidaire. Le

mentorat et l'ouverture à aider les autres sont cruciaux pour la

croissance personnelle et collective dans le domaine.

Chapitre 26 | 5 Développement Driven par les Tests|
Questions et réponses

1.Question

Qu'est-ce que le développement piloté par les tests (TDD)

et pourquoi est-il important ?
Réponse:Le développement piloté par les tests

(TDD) est une discipline de programmation où les

tests unitaires sont écrits avant le code réel. Cette

méthodologie est cruciale car elle garantit non

seulement que le code fonctionne correctement, mais

améliore également la fiabilité et la maintenabilité

du code en intégrant continuellement les tests dans

le processus de développement.

2.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Comment l'expérience de la programmation avec Kent

Beck a-t-elle changé votre compréhension des pratiques

de codage ?
Réponse:Kent Beck a démontré un cycle de codage rapide

consistant à écrire un petit test unitaire suivi juste du code de

production nécessaire pour faire passer ce test. Cette

approche a transformé ma vision sur l'efficacité du codage,

prouvant que des tests fréquents peuvent mener à un

développement plus rapide et à une meilleure qualité de

code, semblable à la programmation dans un langage

interprété.

3.Question

Quelles sont les trois lois du TDD ?
Réponse:1. Vous devez écrire un test unitaire échouant avant

d'écrire du code de production. 2. N'écrivez pas plus que le

code de test unitaire nécessaire pour le faire échouer. 3.

N'écrivez pas plus de code de production que nécessaire pour

faire passer le test unitaire actuellement échouant. Ce cycle

augmente la productivité et encourage une conception

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

réfléchie.

4.Question

Quels avantages tirez-vous de l'adoption du TDD comme

discipline professionnelle ?
Réponse:Adopter le TDD favorise une plus grande certitude

dans votre code, améliore le taux d'injection de défauts,

encourage le courage de refactoriser et de coder proprement

sans craindre de casser des choses, crée une meilleure

documentation grâce à des tests automatisés et conduit à une

qualité de conception améliorée.

5.Question

Pourquoi le TDD est-il lié à une qualité de code

supérieure et à une réduction des défauts ?
Réponse:Parce que le TDD nécessite des tests continus, il

entraîne un nombre accru de tests développés et exécutés tout

au long du processus de codage. Cela aide non seulement à

détecter les défauts tôt, mais assure également une couverture

complète du code, réduisant considérablement les chances de

bogues.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

6.Question

Comment le TDD encourage-t-il de meilleures pratiques

de conception ?
Réponse:Écrire des tests d'abord oblige les développeurs à

réfléchir de manière critique aux dépendances et à l'isolement

des fonctions, empêchant ainsi le code étroitement couplé

difficile à tester. Cette focalisation sur la testabilité promeut

une meilleure architecture et un design qui soutient la

maintenabilité.

7.Question

Pourquoi les professionnels devraient-ils considérer le

TDD comme une discipline nécessaire plutôt que comme

une option ?
Réponse:Étant donné les avantages substantiels de certitude,

de réduction des défauts et de meilleure documentation que

le TDD offre, il peut être perçu comme non professionnel de

ne pas l'adopter. C'est une discipline qui, si elle est suivie de

manière cohérente, propulse l'efficacité d'un développeur et

la qualité globale du code.

8.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Quelles idées fausses sur le TDD doivent être abordées ?
Réponse:Le TDD n'est pas une solution garantie pour écrire

du code parfait ni un dogme strict à suivre dans toutes les

circonstances. Il nécessite une application pratique ; il existe

des situations où adhérer au TDD peut ne pas être faisable ou

bénéfique.

9.Question

Comment les principes du TDD peuvent-ils améliorer les

pratiques de codage d'une équipe dans son ensemble ?
Réponse:En adoptant le TDD, les équipes cultivent une

culture de responsabilité et de qualité dans leurs pratiques de

codage. Cela encourage une compréhension partagée du code

à travers des cas de test complets, favorise la collaboration et

assure une livraison cohérente de logiciels de haute qualité.

Chapitre 27 | 6 Pratiquer| Questions et réponses

1.Question

Pourquoi la pratique est-elle fondamentale dans le

développement logiciel ?
Réponse:La pratique est fondamentale dans le

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

développement logiciel car elle permet aux

programmeurs d’affiner leurs compétences,

d’améliorer leur rapidité et leur efficacité, et de se

préparer à des scénarios de résolution de problèmes

du monde réel. Tout comme les musiciens ou les

athlètes, les programmeurs doivent s’engager dans

des exercices de perfectionnement des compétences

qui leur permettent de réagir rapidement et avec

précision sous pression.

2.Question

Comment la pratique de la programmation a-t-elle évolué

depuis les débuts ?
Réponse:La pratique de la programmation a évolué de

manière significative depuis les débuts, lorsque les

possibilités d'entraînement étaient limitées par de longs

temps de compilation et des processus de débogage lents.

Aujourd'hui, grâce à des boucles de rétroaction rapides grâce

à des temps de compilation courts et à une puissance de

calcul accrue, les programmeurs peuvent pratiquer et

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

améliorer leurs compétences beaucoup plus efficacement,

renforçant ainsi leur capacité à peaufiner leur art.

3.Question

Quel est le concept de "Coding Dojo" et en quoi cela

bénéficie-t-il aux programmeurs ?
Réponse:Un Coding Dojo est un environnement de pratique

où les programmeurs se réunissent pour travailler sur des

katas, ou des exercices structurés, tout comme les artistes

martiaux pratiquent leurs mouvements. Ce cadre collaboratif

favorise l’apprentissage entre pairs, expose les participants à

des approches diversifiées de la résolution de problèmes et

les aide à intégrer les pratiques et techniques de

programmation.

4.Question

Qu'est-ce qu'un kata de programmation et pourquoi est-il

important ?
Réponse:Un kata de programmation est un exercice de

codage bien défini qui est pratiqué à plusieurs reprises pour

perfectionner une compétence ou une technique spécifique.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Tout comme le fait de répéter une pièce musicale, pratiquer

des katas aide à solidifier des concepts clés de

programmation dans la mémoire d’un programmeur,

améliorant leur efficacité et leur familiarité avec les

méthodes de résolution de problèmes.

5.Question

Quel rôle la diversité dans la résolution de problèmes

joue-t-elle pour les programmeurs ?
Réponse:La diversité dans la résolution de problèmes permet

aux programmeurs de rencontrer divers défis, les empêchant

de devenir stagnants ou trop spécialisés dans un langage ou

un domaine. Cette variété d'expérience les prépare aux

évolutions de l'industrie et favorise la créativité et

l'adaptabilité, des traits cruciaux pour le succès à long terme

dans leur carrière.

6.Question

Pourquoi les programmeurs devraient-ils pratiquer

pendant leur temps libre ?
Réponse:Les programmeurs devraient pratiquer pendant leur

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

temps libre car il est de leur responsabilité de maintenir et

d’améliorer leurs compétences. Tout comme d'autres

professionnels pratiquent en dehors de leur travail rémunéré,

les programmeurs ne devraient pas s'attendre à ce que leurs

employeurs leur fournissent toutes les opportunités

d'apprentissage ; la pratique personnelle conduit à une

meilleure préparation et un potentiel de gains plus élevés.

7.Question

Quelle est l'importance de maîtriser différents langages

de programmation ?
Réponse:Maîtriser différents langages de programmation est

vital pour un programmeur car cela élargit leur ensemble de

compétences, offre de nouvelles perspectives sur la

résolution de problèmes et les maintient adaptables aux

exigences en constante évolution de l'industrie. Être

polyglotte aide les programmeurs à rester pertinents et

préparés pour diverses opportunités d'emploi dans un

domaine en rapide évolution.

8.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Quelle est la relation entre la rapidité en programmation

et la pratique ?
Réponse:La rapidité en programmation est directement liée à

la pratique ; plus un programmeur s'entraîne sur des tâches de

codage, plus ses frappes deviennent instinctives et fluides.

Tout comme les athlètes ou les musiciens, une pratique

cohérente et ciblée permet aux programmeurs d’exécuter

rapidement des tâches complexes, permettant à leurs

ressources mentales de se concentrer sur des résolutions de

problèmes de niveau supérieur.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 28 | 7 Tests d'acceptation| Questions et
réponses

1.Question

Quel est le rôle principal d'un développeur professionnel

au sein d'une équipe ?
Réponse:Le rôle principal d'un développeur

professionnel est d'engager une communication

efficace avec les membres de l'équipe et les parties

prenantes du business, assurant des échanges précis

et sains concernant les exigences et l'avancement du

projet.

2.Question

Pourquoi est-il difficile de communiquer les exigences

entre les business et les programmeurs ?
Réponse:La communication des exigences est souvent sujette

à des erreurs car les parties prenantes peuvent décrire ce

qu'elles pensent avoir besoin, mais les programmeurs

interprètent souvent ces descriptions différemment. Ce

désalignement peut conduire à créer le mauvais produit.

3.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Pouvez-vous expliquer le concept de 'précision

prématurée' dans les exigences d'un projet ?
Réponse:La précision prématurée fait référence à la tendance

des business et des développeurs à rechercher des exigences

trop détaillées trop tôt dans le projet. Cela peut conduire à un

gaspillage de ressources car les hypothèses initiales changent

souvent lorsque le système réel est démontré.

4.Question

Comment le principe d'incertitude s'applique-t-il au

développement logiciel ?
Réponse:Le principe d'incertitude dans ce contexte suggère

que lorsque les parties prenantes voient leurs exigences

exécutées dans le système, elles réalisent souvent que ce

qu'elles ont spécifié ne répond pas à leurs véritables besoins.

Cette prise de conscience peut changer leur perception et

leurs exigences pour la suite.

5.Question

Quelle est la solution au problème de la précision

prématurée ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:La solution consiste à différer la précision des

exigences aussi longtemps que possible, ne les détaillant

juste avant le développement. Cependant, les développeurs

doivent être attentifs à l'ambiguïté tardive, en s'assurant que

toutes les parties prenantes s'accordent sur les spécificités

avant le début du développement.

6.Question

Qu'est-ce que les tests d'acceptation ?
Réponse:Les tests d'acceptation sont des tests collaboratifs

conçus par les parties prenantes et les programmeurs pour

définir clairement quand une exigence est considérée comme

'terminée', garantissant que tout le monde a la même

compréhension des livrables du projet.

7.Question

Que signifie 'terminé' dans le contexte des tests

d'acceptation ?
Réponse:'Terminé' signifie que tout le code est écrit, tous les

tests passent, et que la QA et les parties prenantes ont accepté

la fonctionnalité comme satisfaisante aux exigences.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

8.Question

Pourquoi est-il important d'automatiser les tests

d'acceptation ?
Réponse:Automatiser les tests d'acceptation est important car

cela réduit les coûts et garantit une vérification cohérente de

la fonctionnalité sans le poids des tests manuels. Les tests

automatisés peuvent être exécutés fréquemment, permettant

un retour d'information plus rapide et moins de risques

d'erreurs.

9.Question

Comment les tests d'acceptation devraient-ils être écrits

selon le chapitre ?
Réponse:Idéalement, les tests d'acceptation devraient être

écrits collaborativement par les parties prenantes et la QA,

avec la revue des développeurs. Ils devraient être créés tard

dans le cycle de développement et mis à jour si nécessaire

pour maintenir clarté et pertinence.

10.Question

Pourquoi n'est-il pas suffisant d'avoir uniquement des

tests unitaires au lieu de tests d'acceptation ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Les tests unitaires et les tests d'acceptation ont des

objectifs différents : les tests unitaires se concentrent sur le

fonctionnement interne du système du point de vue du

programmeur, tandis que les tests d'acceptation définissent le

comportement du système du point de vue commercial. Les

deux sont cruciaux pour une compréhension et une validation

complètes.

11.Question

Pouvez-vous détailler les défis de la spécification des

interfaces graphiques (GUIs) dans les tests d'acceptation

?
Réponse:Spécifier les GUIs à l'avance est difficile en raison

de leur nature subjective et des changements fréquents. Au

lieu de se concentrer sur les aspects visuels, les tests

d'acceptation devraient interagir avec les capacités

sous-jacentes du système, traitant la GUI comme une API

lorsque cela est possible pour éviter la frailité.

12.Question

Quelle est l'importance de l'intégration continue (CI)

dans les tests ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:L'Intégration Continue garantit que les tests sont

exécutés fréquemment et automatiquement chaque fois que

des modifications de code sont apportées. Cela permet un

retour d'information rapide sur la qualité du code, et tout test

échoué doit être traité comme une urgence pour une

résolution rapide afin de maintenir l'intégrité du code.

13.Question

Quel est le bénéfice ultime d'écrire des tests d'acceptation

automatisés comme décrit dans le chapitre ?
Réponse:Les tests d'acceptation automatisés éliminent

l'ambiguïté dans les exigences, servent de document formel

des exigences et fournissent une méthode claire pour vérifier

si le logiciel développé répond aux besoins des parties

prenantes, améliorant ainsi la communication et le succès du

projet.

Chapitre 29 | 8 Stratégies de test| Questions et
réponses

1.Question

Quelle est l'importance d'une stratégie de test pour les

équipes de développement professionnelles ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Une bonne stratégie de test est essentielle

car elle ne se limite pas à écrire quelques tests

unitaires ou tests d'acceptation. Elle garantit une

assurance qualité complète tout au long du

processus de développement, conduisant à un

logiciel qui respecte les normes de performance et de

fiabilité attendues. Elle intègre différents types de

tests (unitaires, composants, intégration, système et

exploratoire) pour aborder systématiquement la

qualité et la robustesse du logiciel.

2.Question

Comment devrait-on caractériser la relation entre les

équipes QA et Développement ?
Réponse:La QA et le Développement doivent travailler en

collaboration plutôt que de manière antagoniste. La relation

idéale repose sur la QA agissant en tant que spécificateurs

qui traduisent les exigences commerciales en tests

d'acceptation automatisés et en tant que caractérisateurs qui

explorent les comportements réels du système. Ce travail

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

d'équipe vise l'objectif que la QA ne découvre rien de

problématique, soulignant ainsi que la qualité est une

responsabilité partagée.

3.Question

Quels sont les composants de la pyramide

d'automatisation des tests ?
Réponse:La pyramide d'automatisation des tests se compose

de plusieurs couches : à la base se trouvent les tests unitaires

(les tests les plus fondamentaux se concentrant sur des

composants individuels), suivis des tests de composants

(couvrant les règles métier au sein des composants

individuels), puis les tests d'intégration (testant la manière

dont les composants fonctionnent ensemble), et enfin les

tests systèmes (s'assurant que l'ensemble du système

fonctionne correctement). Au sommet se trouvent les tests

manuels exploratoires, où les testeurs humains interagissent

de manière créative avec le système pour déceler des

problèmes.

4.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Quel est le rôle des tests unitaires dans le processus de

développement ?
Réponse:Les tests unitaires sont cruciaux car ils sont rédigés

par les développeurs pour garantir que les sections

individuelles du code (unités) fonctionnent comme prévu

avant d'être intégrées dans des systèmes plus larges. Ils

offrent une couverture presque totale, permettant aux

développeurs de détecter les problèmes tôt et de s'assurer que

leur code répond aux exigences spécifiées.

5.Question

Quel est l'objectif des tests manuels exploratoires ?
Réponse:L'objectif des tests manuels exploratoires est

d'identifier des comportements inattendus et de confirmer le

fonctionnement attendu du système à travers l'intuition et la

créativité humaines. Il ne s'agit pas d'atteindre une

couverture, mais plutôt de s'assurer que le logiciel fonctionne

bien dans un scénario réel.

6.Question

Comment les équipes de développement peuvent-elles

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

atteindre l'objectif selon lequel la QA ne devrait trouver

rien de problématique ?
Réponse:Pour atteindre cet objectif, les équipes de

développement doivent mettre en œuvre une stratégie de test

structurée impliquant une collaboration avec la QA pour

créer et exécuter une hiérarchie de tests (unitaires,

composants, intégration, système et exploratoires).

L'exécution fréquente des tests fournit un retour

d'information immédiat et aide à maintenir des normes

élevées de qualité du code tout au long du cycle de

développement.

7.Question

Que doivent réfléchir les équipes lorsque la QA trouve un

bug ?
Réponse:Lorsque la QA découvre un bug, l'équipe de

développement doit réagir avec préoccupation, se demandant

comment le bug s'est produit. Cette réflexion devrait mener à

une analyse des processus de test et de la qualité du code,

suivie de la mise en œuvre de mesures préventives pour éviter

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

des problèmes similaires à l'avenir.

Chapitre 30 | 9 Gestion du Temps| Questions et
réponses

1.Question

Quelles stratégies peuvent être mises en œuvre pour gérer

efficacement le temps dans un environnement

professionnel ?
Réponse:Dans l'environnement chaotique du

développement logiciel, il est crucial d'adopter une

approche structurée de la gestion du temps. Une

stratégie efficace est d'allouer des blocs de temps

spécifiques aux tâches, comme l'indique <CODER

PROPREMENT>. Par exemple, utiliser un emploi

du temps divisé en intervalles de 15 minutes peut

contribuer à maximiser la productivité en assignant

des tâches précises durant ces périodes. De plus,

incorporer des périodes tampons dans le calendrier

permet de gérer les interruptions sans perdre de vue

les activités essentielles. Se lever tôt pour assurer un

temps ininterrompu avant le chaos de la journée

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

peut également améliorer la concentration et

l'efficacité.

2.Question

Comment devrait-on gérer les réunions pour s'assurer

qu'elles soient un usage productif du temps ?
Réponse:Comprendre la nature ambivalente des réunions est

vital. Les réunions sont nécessaires, mais entraînent souvent

un temps perdu. Pour gérer judicieusement sa présence aux

réunions, n'acceptez que les invitations qui sont cruciales

pour votre travail. Si une réunion manque d'objectifs clairs

ou dérive dans des discussions non pertinentes, n'hésitez pas

à partir poliment. Avoir un ordre du jour bien défini et un

objectif fixé est la clé pour mener des réunions productives,

garantissant que le temps des participants est utilisé

efficacement.

3.Question

Qu'est-ce que le 'focus-manna' et comment peut-on le

préserver tout en travaillant ?
Réponse:Le focus-manna est une métaphore pour désigner

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

l'énergie mentale et la concentration nécessaires pour un

travail profond et productif. Pour protéger cette ressource, les

professionnels doivent reconnaître leurs moments de

concentration optimale et planifier des tâches exigeantes en

conséquence. Éviter les distractions, prévoir des pauses pour

se ressourcer et gérer sa consommation de caféine sont des

pratiques essentielles. Il est également important d'équilibrer

des périodes de concentration intense avec des activités qui

aident à restaurer l'énergie mentale, comme l'exercice ou le

temps passé en pleine nature.

4.Question

Quels sont les signes d'alerte de 'l'inversion des priorités'

dans un environnement de travail ?
Réponse:L'inversion des priorités se produit lorsque des

tâches moins importantes sont privilégiées par rapport à des

missions plus critiques, souvent à cause de la peur ou de

l'inconfort face au défi principal. Les signes d'alerte incluent

le temps excessif passé sur des tâches triviales, le fait de se

convaincre de fausses urgences ou l'accumulation d'affaires

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

inachevées tout en évitant des contributions significatives à

un projet. Pour combattre cela, il est essentiel de maintenir

une clarté sur les priorités des tâches et de se tenir

responsable d'aborder directement les défis les plus pressants.

5.Question

Comment les développeurs peuvent-ils reconnaître et

naviguer à travers des 'impasses' et des 'désordres' dans

le développement logiciel ?
Réponse:Les développeurs doivent être vigilants et flexibles

dans leur approche pour éviter de se coincer dans des

impasses, où ils s'engagent excessivement dans une idée ou

un design qui ne mènera pas à des résultats fructueux. Des

outils comme des revues de code fréquentes ou des

discussions avec des pairs peuvent fournir des informations

pour identifier ces chemins sans sortie tôt. En ce qui

concerne les désordres, reconnaître les signes—comme la

baisse de productivité ou l'excès de complexité—et agir

rapidement pour refactoriser ou simplifier la base de code

peut aider à atténuer les dommages à long terme.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

6.Question

Qu'est-ce que la Technique Pomodoro et comment

peut-elle améliorer la gestion du temps ?
Réponse:La Technique Pomodoro est une méthode de

gestion du temps qui utilise des intervalles de travail

concentré, traditionnellement de 25 minutes, appelés

'tomates'. Après chaque intervalle, prenez une courte pause

pour vous ressourcer. Cette approche structurée aide à

minimiser les distractions et favorise une productivité accrue

en créant un sentiment d'urgence et de concentration au sein

des blocs de temps définis. Même suivre combien de tomates

sont complétées chaque jour peut fournir des aperçus sur la

productivité et aider à identifier les schémas de concentration

et de distraction.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 31 | 10 Estimation| Questions et réponses

1.Question

Pourquoi l'estimation est-elle considérée comme

terrifiante pour les professionnels du logiciel ?
Réponse:L'estimation est effrayante car elle impacte

significativement la valeur commerciale et la

réputation des développeurs. Elle est souvent à

l'origine de la méfiance entre les parties prenantes

commerciales et les développeurs, entraînant anxiété

et échec.

2.Question

Quelle est la différence cruciale entre la façon dont les

entreprises et les développeurs perçoivent les estimations

?
Réponse:Les entreprises considèrent les estimations comme

des engagements qu'il faut réaliser, tandis que les

développeurs les voient comme des suppositions sans

obligation.

3.Question

Quelles sont les conséquences de faire un engagement

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

dans le développement logiciel ?
Réponse:S'engager à respecter une échéance signifie qu'on

doit y parvenir, souvent au détriment de son temps personnel

et de sa famille, ce qui entraîne une pression immense et un

risque de dommages à la réputation si l'engagement n'est pas

respecté.

4.Question

Comment les développeurs devraient-ils communiquer

leurs estimations pour éviter les malentendus ?
Réponse:Les développeurs devraient communiquer

clairement la distribution de probabilité de leurs estimations,

indiquant à quel point ils croient que la tâche pourra être

accomplie dans un certain délai.

5.Question

Quelle est l'importance de la technique PERT dans

l'estimation ?
Réponse:La méthode d'évaluation et d'examen des

programmes (PERT) permet aux développeurs de fournir un

moyen structuré de calculer les estimations sous forme de

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

distributions de probabilité, aidant ainsi à gérer les attentes

efficacement.

6.Question

Comment le travail d'équipe peut-il améliorer la

précision des estimations dans les projets logiciels ?
Réponse:L'intuition collective et l'expérience des membres

de l'équipe grâce à des techniques comme le large Delphi

peuvent conduire à des estimations plus précises. La

discussion et la construction d'un consensus aident à affiner

les estimations sur une série d'itérations.

7.Question

Quelle est la loi des grands nombres et comment

s'applique-t-elle à l'estimation ?
Réponse:La loi des grands nombres suggère qu'estimer de

nombreuses petites tâches individuellement et additionner

leurs estimations donne une plus grande précision que

d'estimer une tâche plus grande dans son ensemble. Cela aide

à atténuer les erreurs individuelles.

8.Question

Comment les professionnels abordent-ils les engagements

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

et les estimations dans le développement logiciel ?
Réponse:Les développeurs professionnels s'efforcent de ne

pas faire d'engagements dont ils ne sont pas sûrs. Au lieu de

cela, ils fournissent des estimations probabilistes qui incluent

des délais d'achèvement attendus et des variations possibles,

garantissant une communication plus claire.

9.Question

Que peut-il se passer si les développeurs manquent une

estimation ?
Réponse:Manquer une estimation n'est pas perçu comme

déshonorant, mais cela peut entraîner une perception négative

si cela se traduit par un non-respect des délais de projet. Cela

souligne l'importance de communiquer clairement que les

estimations ne sont pas des engagements.

10.Question

Comment des techniques comme le Planning Poker

peuvent-elles améliorer le processus d'estimation ?
Réponse:Des techniques comme le Planning Poker engagent

l'équipe dans un processus d'estimation collaboratif,

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

permettant à chacun d'apporter ses idées et d'arriver à un

consensus qui reflète un jugement collectif plus précis.

Chapitre 32 | 11 La Pression| Questions et réponses

1.Question

Comment un professionnel doit-il se comporter sous

pression lors de situations critiques ?
Réponse:Un professionnel doit rester calme et

décisif, donner des ordres clairs et précis, s'en tenir

à sa formation et garder son sang-froid, plutôt que

de céder au stress et au chaos.

2.Question

Quel a été le tournant dans la vie professionnelle de

l'auteur ?
Réponse:Le tournant est survenu lorsque l'auteur a réalisé,

après un moment de réflexion durant une promenade, qu'il

n'était pas heureux de son comportement ni de

l'environnement chargé de pression. Il a décidé de cesser de

travailler de longues heures et d'éviter les tendances

destructrices de crier et de créer du code en désordre.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

3.Question

Quelle est l'une des meilleures stratégies pour éviter la

pression dans les environnements de travail ?
Réponse:La meilleure stratégie est d'éviter de s'engager à

respecter des délais irréalistes et de s'assurer que le risque est

quantifié et communiqué à l'entreprise.

4.Question

Que faire lorsque les délais deviennent écrasants ?
Réponse:Ne paniquez pas. Au lieu de cela, ralentissez pour

réfléchir à la situation, communiquez avec votre équipe sur

les problèmes et appuyez-vous sur vos disciplines établies

pour naviguer dans la situation.

5.Question

Pourquoi est-il important de suivre constamment les

disciplines, surtout en cas de crise ?
Réponse:Suivre vos disciplines établies en cas de crise

renforce votre croyance en ces méthodes comme efficaces. Si

vous les abandonnez en période difficile, cela indique un

manque de confiance dans leur efficacité.

6.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Quel rôle la communication joue-t-elle lors de situations

de forte pression ?
Réponse:La communication est cruciale ; faire savoir à votre

équipe et à vos supérieurs les problèmes rencontrés et

demander leur avis aide à gérer les attentes et réduit les

surprises, qui peuvent aggraver la pression.

7.Question

Comment le travail en binôme avec un autre développeur

peut-il aider sous pression ?
Réponse:La programmation en binôme permet de résoudre

les problèmes de manière collaborative, où les partenaires

peuvent se soutenir mutuellement, maintenir leur

concentration et s'assurer de respecter les meilleures

pratiques, réduisant ainsi la probabilité d'erreurs et

améliorant la productivité.

8.Question

Quelle est la perspective de l'auteur sur les pratiques

'rapides et sales' ?
Réponse:L'auteur pense que 'rapides et sales' est un oxymore

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

; un travail désordonné vous ralentira inévitablement et aura

des conséquences négatives à long terme.

9.Question

Quelles sont les stratégies clés mentionnées pour gérer

efficacement la pression ?
Réponse:Évitez la pression autant que possible en gérant vos

engagements et en maintenant des pratiques propres, et

lorsque la pression est inévitable, restez calme,

communiquez, appuyez-vous sur vos disciplines et demandez

de l'aide.

10.Question

Comment l'auteur suggère-t-il de maintenir la qualité de

la production sous pression ?
Réponse:En gardant les systèmes, le code et le design aussi

clairs que possible, les professionnels peuvent éviter la

production 'en désordre' qui conduit souvent à une pression

supplémentaire et à des délais non respectés.

Chapitre 33 | 12 Collaboration| Questions et
réponses

1.Question

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Pourquoi la collaboration est-elle soulignée dans les

équipes de développement logiciel ?
Réponse:La collaboration dans le développement

logiciel est cruciale car la plupart des logiciels sont

créés par des équipes. Une collaboration efficace

entre les membres de l'équipe améliore la résolution

de problèmes, la qualité du code et garantit que tout

le monde travaille vers les mêmes objectifs

commerciaux. Cet effort collectif conduit à des

processus plus efficaces et de meilleurs résultats,

bénéficiant finalement à la productivité et au succès

global du projet.

2.Question

Que veut dire l'auteur en disant que les programmeurs

préfèrent souvent travailler seuls ?
Réponse:L'auteur suggère que de nombreux programmeurs

sont introvertis et apprécient la concentration solitaire de la

programmation. Bien que certains puissent préférer la clarté

et la prévisibilité des interactions avec les machines par

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

rapport aux relations humaines compliquées, cet état d'esprit

peut entraver le travail d'équipe efficace et la collaboration

qui sont essentielles dans des contextes professionnels.

3.Question

Quels défis l'auteur et son ami ont-ils rencontrés lors de

l'optimisation de leur générateur de renvois ?
Réponse:L'auteur et son ami ont rencontré des difficultés

avec les performances de leur générateur de renvois, écrivant

d'abord un code inefficace et lent. Ils ont expérimenté divers

structures de données et algorithmes sans connaissances

avancées, affrontant les difficultés d'optimisation des

performances par essais et erreurs, ce qui a mené à de la

frustration mais finalement à un apprentissage significatif.

4.Question

Comment l'expérience de l'auteur chez Outboard Marine

Corp. a-t-elle façonné sa compréhension du

professionnalisme ?
Réponse:L'expérience de l'auteur chez Outboard Marine

Corp. a été déterminante car il a initialement négligé

l'importance de la politique interne et des objectifs

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

commerciaux. Être licencié l'a amené à reconnaître la

nécessité de professionnalisme dans le développement

logiciel, soulignant l'importance d'être présent, de respecter

les délais et de comprendre le contexte commercial dans

lequel il travaillait.

5.Question

Que signifie pour l'auteur la 'propriété collective' dans les

équipes de programmation ?
Réponse:'La propriété collective' fait référence à la pratique

de partager le code entre tous les membres de l'équipe, plutôt

que d'avoir une propriété individuelle sur des parties

spécifiques. Cette approche favorise la collaboration, permet

d'avoir des perspectives diverses sur le code et encourage une

responsabilité partagée pour tous les aspects du projet,

réduisant les silos de code et encourageant l'apprentissage en

équipe.

6.Question

Pourquoi l'auteur prône-t-il le pair programming ?
Réponse:L'auteur prône le pair programming car il renforce

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

la collaboration, augmente l'efficacité et facilite le partage

des connaissances entre les membres de l'équipe. Le pair

programming permet une revue de code immédiate, réduit les

'silos de connaissances' et aide les membres de l'équipe à

apprendre les uns des autres, menant finalement à un

meilleur développement logiciel.

7.Question

Quelle est la position de l'auteur sur la communication au

sein des équipes de programmation ?
Réponse:L'auteur estime que la communication efficace au

sein des équipes de programmation est essentielle. Il souligne

la nécessité pour les membres de l'équipe de communiquer

ouvertement et fréquemment, de partager leurs frustrations et

leurs idées, ce qui peut conduire à une meilleure

collaboration et à une résolution de problèmes, contrairement

à l'idée que travailler seul est plus productif.

8.Question

En quoi l'anecdote sur le cervelet est-elle liée à la

collaboration en équipe ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:L'anecdote sur le cervelet illustre comment une

communication inefficace peut mener à l'isolement parmi les

programmeurs. L'auteur l'utilise pour souligner l'importance

de se faire face et de s'engager dans une interaction directe

pour favoriser la collaboration. Frotter les 'cervelets'

symbolise le style de travail déconnecté qui entrave le travail

d'équipe, tandis que la communication directe promeut une

équipe plus forte et cohésive.

9.Question

Quelle conclusion l'auteur tire-t-il des programmeurs et

de leur besoin d'interagir avec les autres ?
Réponse:L'auteur conclut que malgré la préférence de

nombreux programmeurs pour un travail solitaire, la

programmation est intrinsèquement une profession

collaborative. Pour réussir et apprécier leur travail, les

programmeurs doivent apprendre à interagir avec leurs

collègues et le monde des affaires, soulignant que la

communication et la collaboration efficaces sont intégrales à

l'amélioration des performances individuelles et d'équipe.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 34 | 13 Équipes et Projets| Questions et
réponses

1.Question

Quel est le principal problème d'assigner des

programmeurs à plusieurs projets simultanément ?
Réponse:Le principal problème est que le fait de

diviser le temps des programmeurs entre plusieurs

projets les empêche de former une équipe cohésive.

Cela dilue leur efficacité, car ils ne peuvent pas se

consacrer pleinement à un projet, ce qui entraîne

des inefficacités et une mauvaise collaboration.

2.Question

Qu'est-ce qu'une 'équipe soudée' et pourquoi est-elle

importante ?
Réponse:Une équipe soudée est un groupe cohérent

d'individus qui ont développé de fortes relations,

comprennent les forces et les faiblesses des uns et des autres,

et collaborent efficacement. Cette synergie leur permet de

résoudre les problèmes plus efficacement, de se soutenir

mutuellement et de produire un travail de meilleure qualité.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

3.Question

Quelles sont les caractéristiques idéales d'une équipe

soudée en termes de composition et de gestion de projet ?
Réponse:Une équipe soudée idéale se compose d'environ une

douzaine de membres, incluant généralement des

programmeurs, des testeurs, des analystes, et un chef de

projet, souvent avec un ratio de 2:1 de programmeurs par

rapport aux testeurs. Cette configuration permet un

fonctionnement fluide et une exécution efficace des projets.

4.Question

Pourquoi est-il plus efficace de former des équipes autour

des personnes plutôt que des projets ?
Réponse:Former des équipes autour d'individus établis

permet une meilleure collaboration et continuité. Une équipe

qui a réussi à se souder peut gérer plusieurs projets plus

efficacement car ses membres peuvent adapter leur flux de

travail, prioriser les tâches et tirer parti de leur chimie établie.

5.Question

Comment la direction peut-elle allouer efficacement des

ressources entre plusieurs projets tout en travaillant avec

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

des équipes soudées ?
Réponse:La direction peut s'appuyer sur la vélocité de

l'équipe—mesurée en points de travail accomplis dans le

temps—pour fixer des objectifs réalistes pour chaque projet.

En cas d'urgence, les priorités peuvent être rapidement

réajustées grâce à la familiarité de l'équipe et à sa capacité à

réallouer les efforts de manière fluide.

6.Question

Que doivent considérer les propriétaires de projet

lorsqu'ils travaillent avec des équipes soudées ?
Réponse:Les propriétaires de projet doivent comprendre que

bien qu'ils puissent perdre un certain contrôle sur les

ressources dédiées, la flexibilité gagnée en ayant des équipes

soudées permet aux entreprises de prioriser les projets en

fonction des besoins immédiats, au bénéfice ultime des

résultats des projets.

7.Question

Quel message clé les organisations doivent-elles retenir

concernant la formation d'équipes par rapport à

l'exécution de projets ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:Les organisations doivent privilégier la formation

d'équipes stables et persistantes susceptibles de se souder

avec le temps, plutôt que de réorganiser fréquemment les

équipes autour de différents projets. Cette approche

maximise la productivité et favorise un meilleur

environnement de travail.

Chapitre 35 | 14 Mentorat, Apprentissages, et
Artisanat| Questions et réponses

1.Question

Pourquoi de nombreux diplômés en informatique, selon

l'auteur, ne sont-ils pas bien préparés à la programmation

dans le monde réel malgré leur formation ?
Réponse:De nombreux diplômés en informatique

manquent de compétences fondamentales en

programmation car ils ne suivent souvent pas de

cours de programmation durant leurs études. Ceux

qui excellent se sont généralement auto-formés

avant et pendant leur séjour à l'université. De plus,

il existe un décalage entre ce qui est appris dans les

milieux académiques et les besoins pratiques de

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

l'industrie.

2.Question

Quelles anecdotes l'auteur fournit-il pour illustrer son

intérêt précoce pour la programmation et comment

ont-elles influencé sa carrière ?
Réponse:L'auteur se souvient d'avoir reçu un jouet

Digi-Comp I étant enfant, ce qui a éveillé son intérêt pour la

programmation. Après avoir eu du mal à le comprendre par

lui-même, il a reçu un manuel qui lui a enseigné l'algèbre

booléenne, l'amenant à créer son premier programme. Cette

expérience fondamentale, associée à l'observation de

techniciens et à l'auto-apprentissage grâce à divers mentors et

outils, a solidifié sa passion pour la programmation.

3.Question

En réfléchissant à ses expériences, que suggère l'auteur

comme essentiel pour un mentorat efficace en

programmation ?
Réponse:L'auteur soutient que le mentorat efficace implique

une guidance pratique, de l'observation et l'enseignement des

principes fondamentaux à travers la pratique et la théorie. Il

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

souligne que l'industrie de la programmation a besoin d'un

mentorat structuré similaire à celui du domaine médical, où

les nouveaux diplômés effectuent une pratique supervisée

extensive avant d'être considérés comme pleinement

qualifiés.

4.Question

Qu'est-ce que le 'artisanat' dans le contexte de la

programmation selon l'auteur ?
Réponse:L'artisanat en programmation fait référence à un état

d'esprit centré sur la qualité, la compétence et le

professionnalisme. Il englobe des techniques, des valeurs et

le perfectionnement des compétences à travers l'observation

et le temps. L'artisanat s'apprend et se transmet à travers le

mentorat et les interactions entre pairs.

5.Question

Comment l'auteur suggère-t-il que la profession de

programmation peut améliorer l'intégration de nouveaux

développeurs dans l'industrie ?
Réponse:L'auteur suggère un modèle d'apprentissage

structuré où les nouveaux diplômés travaillent en étroite

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

collaboration avec des programmeurs expérimentés

(compagnons et maîtres), apprenant par supervision directe,

programmation en binôme et retours réguliers pour

développer à la fois des compétences et des valeurs

professionnelles.

6.Question

Que veut dire l'auteur lorsqu'il dit que l'artisanat est une

'contagion' ?
Réponse:Il utilise 'contagion' au sens métaphorique pour

expliquer que l'état d'esprit de l'artisanat se propage par

l'observation et l'interaction avec des professionnels

compétents. Ce n'est pas enseigné par des conférences, mais

par le biais de l'observation et de l'engagement dans la

pratique d'un travail qualifié.

7.Question

En fin de compte, quel appel à l'action l'auteur

adresse-t-il à ceux de l'industrie du logiciel ?
Réponse:L'auteur appelle les développeurs de logiciels

expérimentés à assumer la responsabilité de mentorat de la

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

prochaine génération, établissant une culture de formation, de

guidance et de développement intentionnel des compétences

en programmation.

Chapitre 36 | A : Outils| Questions et réponses

1.Question

Quelles sont les leçons clés tirées de l'expérience de

l'auteur avec les systèmes de gestion de code source dans

les années 1970 ?
Réponse:L'auteur souligne l'importance de la

fiabilité et de la redondance dans la gestion du code

source. Les défis rencontrés avec les systèmes à

bande, tels que les erreurs de lecture/écriture, ont

enseigné la nécessité d'avoir des processus de

sauvegarde en place, comme le maintien de paires de

bandes pour vérification, réfléchissant à

l'importance cruciale de gérer les risques associés

aux outils de développement logiciel.

2.Question

Pourquoi l'auteur préfère-t-il les outils open-source pour

le contrôle de code source plutôt que les systèmes

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

commerciaux ?
Réponse:L'auteur soutient que les outils open-source sont

généralement plus efficaces car ils sont conçus par des

développeurs pour les développeurs, ce qui garantit qu'ils

répondent aux besoins réels avec des fonctionnalités

pratiques telles que la rapidité et la fiabilité. En revanche, les

outils commerciaux se concentrent souvent davantage sur les

ventes à la direction plutôt que de fournir ce dont les

développeurs ont réellement besoin.

3.Question

Quelle est l'importance de passer du verrouillage

pessimiste aux pratiques modernes de contrôle de source

?
Réponse:Cette transition reflète une amélioration majeure

dans le développement collaboratif. Dans le passé, des

systèmes comme des épingles colorées pour verrouiller des

fichiers limitaient le développement parallèle. Des outils

modernes comme git permettent une édition concurrente sans

verrouillage, permettant des flux de travail plus rapides et

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

plus efficaces tout en aidant les développeurs à gérer les

fusions automatiquement.

4.Question

Comment l'approche de l'auteur concernant l'utilisation

des IDE a-t-elle évolué au fil du temps ?
Réponse:Au départ, l'auteur préférait des éditeurs comme

Emacs et vi, mais il a évolué vers IntelliJ en raison de ses

fonctionnalités robustes adaptées aux besoins de

développement moderne. Cette évolution souligne

l'importance d'exploiter des outils qui améliorent la

productivité et la qualité du code grâce à des fonctionnalités

avancées.

5.Question

Quelle est la philosophie centrale derrière l'approche de

l'auteur en matière de builds continus et de

développement piloté par les tests ?
Réponse:L'auteur insiste sur le maintien d'une 'build

fonctionnelle' à tout moment, avec un accent sur un retour

d'information immédiat chaque fois que du code est intégré.

En veillant à ce que tous les tests passent avant de s'engager,

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

cette pratique favorise la responsabilité et encourage les

développeurs à produire un code fiable en continu.

6.Question

Quels éclairages l'auteur fournit-il concernant la

misconception de l'MDA (Architecture Dirigée par les

Modèles) ?
Réponse:L'auteur critique l'hypothèse de l'MDA selon

laquelle remplacer le code par des diagrammes de haut

niveau pourrait éliminer la gestion des détails. Il souligne que

la programmation implique intrinsèquement la gestion de

détails complexes qui ne peuvent pas être facilement

abstraits, renforçant que le détail définit l'art de la

programmation.

7.Question

Comment l'auteur caractérise-t-il son kit d'outils actuel,

et quels outils met-il en avant ?
Réponse:L'auteur décrit son kit d'outils comme épuré,

comprenant git pour le contrôle de source, Tracker pour le

suivi des problèmes, Jenkins pour le build continu, et IntelliJ

pour le codage. Cela reflète une croyance en l'utilisation

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

d'outils efficaces et puissants qui aident les développeurs à se

concentrer sur la programmation de qualité plutôt que de

s'enliser dans des systèmes hérités encombrants.

8.Question

 Quels principes devraient guider la sélection des

systèmes de suivi des problèmes selon l'auteur ?
Réponse:L'auteur préconise de commencer par des méthodes

simples et manuelles de suivi des problèmes pour

comprendre les besoins de l'équipe avant de passer à des

systèmes plus complexes. Il souligne que le suivi des

problèmes doit rester gérable, plaidant pour une liste limitée

d'éléments exploitables plutôt que des bases de données

écrasantes de bogues.

9.Question

Quel rôle l'auteur suggère-t-il que jouent les outils de test

unitaire dans le développement logiciel ?
Réponse:Les outils de test unitaire sont essentiels pour

garantir un retour d'information rapide sur la qualité du code.

L'auteur insiste sur l'importance de la facilité d'utilisation et

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

des résultats clairs de réussite/échec des tests, promouvant

une culture de responsabilité partagée pour maintenir

l'intégrité du code tout au long du processus de

développement.

10.Question

Comment l'auteur intègre-t-il les exigences commerciales

avec la technologie via des outils de test de composants

comme FITNESSE ?
Réponse:FITNESSE permet la collaboration entre les parties

prenantes commerciales et les développeurs en permettant

d'écrire des spécifications dans un format facilement

compréhensible. Cet alignement entre les perspectives

techniques et commerciales garantit que toutes les parties ont

une clarté sur ce qui constitue une fonctionnalité réussie,

comblant efficacement le fossé entre les besoins

commerciaux et techniques.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 37 | Index| Questions et réponses

1.Question

Quelle est l'importance des tests d'acceptation dans le

développement logiciel ?
Réponse:Les tests d'acceptation sont cruciaux car ils

définissent les critères de succès du point de vue du

client. Ils guident les développeurs dans la

compréhension des besoins du client et garantissent

que le code écrit répond à ces besoins. De plus, ils

facilitent la communication entre les développeurs et

les parties prenantes, en étant alignés sur les

pratiques d'intégration continue.

2.Question

Comment le concept de collaboration améliore-t-il les

résultats d'un projet ?
Réponse:La collaboration favorise le travail d'équipe et peut

conduire à une meilleure qualité de code et à des solutions

innovantes. Elle encourage le partage des connaissances,

conduisant à un sentiment de responsabilité collective pour le

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

projet. Lorsque les membres de l'équipe travaillent bien

ensemble, cela réduit les malentendus et améliore l'efficacité

globale du processus de développement.

3.Question

Quel rôle joue la discipline dans l'artisanat du logiciel ?
Réponse:La discipline est essentielle pour maintenir

l'intégrité du code et respecter les meilleures pratiques. Elle

aide à faire des engagements cohérents et à les respecter,

renforçant ainsi la confiance dans les compétences de

l'équipe et améliorant la qualité du produit.

4.Question

Comment les développeurs peuvent-ils gérer efficacement

la pression dans leur environnement de travail ?
Réponse:Une gestion efficace de la pression implique une

communication proactive sur les difficultés, l'adoption de

techniques de gestion du temps et la priorisation des tâches.

Les développeurs devraient également pratiquer la

recharge—prendre des pauses et s'éloigner du travail pour

prendre du recul, évitant ainsi l'épuisement professionnel.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

5.Question

Qu'est-ce que l'approche 'ne pas nuire' et pourquoi

est-elle importante ?
Réponse:L'approche 'ne pas nuire' met l'accent sur l'écriture

d'un code qui n'introduit pas de nouveaux problèmes ou

complexités. Elle est vitale car elle protège l'intégrité

structurelle du système tout en promouvant la maintenabilité

et la facilité des futures améliorations.

6.Question

Comment le concept de propriété améliore-t-il la qualité

du code ?
Réponse:La propriété collective encourage tous les membres

de l'équipe à prendre la responsabilité du code, conduisant à

une plus grande responsabilité. Cela peut prévenir

l'accumulation de 'messes de code' et garantir qu'une haute

qualité de code soit maintenue, car chacun est investi et

vigilant quant à l'état du projet.

7.Question

Quelle est l'importance de l'apprentissage continu dans la

carrière d'un développeur ?

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Réponse:L'apprentissage continu permet aux développeurs de

se tenir au courant des dernières technologies et pratiques. Il

améliore leurs compétences en résolution de problèmes et

leur adaptabilité, leur permettant de contribuer plus

efficacement à leurs équipes et projets.

8.Question

Pourquoi la communication efficace des exigences est-elle

cruciale dans le développement logiciel ?
Réponse:Une communication claire des exigences minimise

les ambiguïtés et réduit le risque d'erreurs dans la livraison

du projet. Elle assure que toutes les parties prenantes

partagent une compréhension des objectifs du projet,

entraînant une exécution plus fluide et une satisfaction

accrue.

9.Question

Comment accepter l'échec peut-il être bénéfique dans le

développement logiciel ?
Réponse:Accepter l'échec fournit des leçons précieuses qui

peuvent mener à des succès futurs. Cela encourage une

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

culture d'expérimentation et d'innovation où les équipes

peuvent apprendre de leurs erreurs sans crainte, favorisant la

créativité et la résilience dans la résolution de problèmes.

10.Question

Pourquoi l'évitement de la complaisance est-il important

dans les pratiques logicielles ?
Réponse:Éviter la complaisance garantit que les équipes

recherchent constamment l'amélioration. Cela promeut une

approche proactive d'apprentissage et de perfectionnement

des processus, ce qui est essentiel pour s'adapter aux

technologies changeantes et répondre aux besoins des

utilisateurs en évolution.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

CODER PROPREMENT Quiz et test
Vérifier la réponse correcte sur le site de Bookey

Chapitre 1 | 2 Noms Significatifs| Quiz et test

1.Les noms dans le développement logiciel incluent

uniquement des variables et des fonctions.

2.Il est important d'utiliser des noms révélateurs d'intention

pour améliorer la clarté du code.

3.Les noms de méthodes devraient obscurcir leurs fonctions

pour être plus créatifs et accrocheurs.

Chapitre 2 | 3 Fonctions| Quiz et test

1.Idéalement, les fonctions ne devraient pas avoir

plus de trois arguments pour réduire la

complexité.

2.Choisir des noms descriptifs pour les fonctions est crucial

pour la clarté et la définition des attentes.

3.Utiliser des exceptions au lieu de codes d'erreur conduit à

un flux de contrôle plus propre dans les fonctions.

Chapitre 3 | 4 Commentaires| Quiz et test

1.De bons commentaires sont un signe d'échec dans

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://www.bookey.app/fr/book/coder-proprement/quiz
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

l'expression de l'intention à travers le code.

2.Les commentaires devraient être utilisés pour remplacer un

mauvais code au lieu de le nettoyer.

3.Des commentaires vagues qui encombrent la base de code

sont considérés comme une bonne pratique.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 4 | 5 Mise en forme| Quiz et test

1.La mise en forme n'est pas importante en

programmation car elle n'affecte pas la lisibilité ou

la compréhension.

2.Les fichiers devraient idéalement être limités à 200 lignes

pour faciliter la compréhension.

3.Les membres de l'équipe devraient suivre leurs propres

styles de mise en forme plutôt qu'un ensemble de règles

partagées.

Chapitre 5 | 6 Objets et Structures de Données| Quiz
et test

1.Les variables doivent rester publiques pour

maintenir la flexibilité des changements.

2.La loi de Demeter suggère qu'un module doit connaître la

structure interne des objets qu'il manipule.

3.Les structures hybrides qui combinent des caractéristiques

d'objets et de structures de données doivent être évitées

dans la conception.

Chapitre 6 | Gestion des erreurs| Quiz et test

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

1.La gestion des erreurs n'est pas importante en

programmation tant que la logique principale est

correcte.

2.Lancer des exceptions est préférable à l'utilisation de codes

d'erreur car cela améliore la lisibilité du code.

3.Retourner null est une bonne pratique en programmation

car cela simplifie la gestion des erreurs.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 7 | 8 Limites| Quiz et test

1.Intégrer du code tiers conduit toujours à une

clarté et une maintenabilité du code.

2.Encapsuler des composants tiers dans une classe dédiée

améliore la maintenabilité du code.

3.Les tests d'apprentissage sont inutiles lors de l'utilisation de

bibliothèques tierces, car elles peuvent être facilement

comprises par expérimentation.

Chapitre 8 | 9 Tests Unitaires| Quiz et test

1.Le développement piloté par les tests (TDD) met

l'accent sur l'écriture des tests unitaires après

avoir écrit le code de production.

2.Les tests ne doivent pas être maintenus avec les mêmes

normes que le code de production.

3.Les principes F.I.R.S.T. comprennent le fait de rendre les

tests indépendants les uns des autres.

Chapitre 9 | 10 Classes| Quiz et test

1.Les classes doivent commencer par des constantes

statiques publiques, suivies de variables statiques

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

privées, puis de variables d'instance privées, et

enfin de fonctions publiques.

2.Il est préférable d'avoir des classes avec plusieurs

responsabilités et elles ne doivent pas être refactorisées tant

qu'elles sont suffisamment grandes pour gérer toutes les

opérations.

3.Maintenir la cohésion dans les classes peut conduire à la

création de nombreuses petites classes.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 10 | 11 Systèmes| Quiz et test

1.La complexité est bénéfique au développement

logiciel, aidant les produits à être facilement

planifiés, construits et testés.

2.L'injection de dépendances (DI) améliore la séparation des

préoccupations en déplaçant les responsabilités de gestion

des dépendances vers des frameworks externes.

3.Le processus de démarrage doit être intégré à la logique

d'opération normale pour améliorer les performances du

système.

Chapitre 11 | 12 Émergence| Quiz et test

1.Un design doit garantir que le système fonctionne

comme prévu et doit être testé ; les systèmes qui ne

peuvent pas être testés ne devraient pas être

déployés.

2.Éliminer la duplication dans le code aide à améliorer la

clarté et réduit les violations du Principe de Responsabilité

Unique (SRP).

3.Avoir autant de petites classes et méthodes que possible est

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

l'objectif lors de la conception de CODER PROPREMENT.

Chapitre 12 | 13 Concurrence| Quiz et test

1.La concurrence améliore toujours les

performances de l'application.

2.Utiliser des copies de données est une pratique

recommandée pour éviter les problèmes de données

partagées dans la programmation concurrente.

3.Comprendre la concurrence n'est pas nécessaire lorsqu'on

utilise la concurrence gérée par les conteneurs.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 13 | 14 Raffinement Successif| Quiz et test

1.La classe Args était initialement bien structurée et

facile à maintenir.

2.Ce chapitre encourage l'utilisation du développement piloté

par les tests (TDD) durant le processus de refactoring.

3.Le refactoring de la classe Args a abouti à un design plus

modulaire avec des responsabilités plus claires.

Chapitre 14 | 15 Les Internes de JUnit| Quiz et test

1.JUnit a été développé uniquement par Kent Beck

sans aucune collaboration.

2.Le module `ComparisonCompactor` présente les

différences entre deux chaînes de manière claire.

3.La version finale de `ComparisonCompactor` ne suit pas

les meilleures pratiques et manque de regroupement

logique des fonctions.

Chapitre 15 | 16 Refactorisation de SerialDate| Quiz
et test

1.Le refactoring de la classe SerialDate a été initié

malgré la grande qualité du code original.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

2.Le processus de refactoring a inclus l'amélioration de la

couverture des tests en créant une suite de tests plus

complète.

3.Le nom de la classe original 'SerialDate' a été maintenu

tout au long du processus de refactoring pour éviter toute

confusion.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 16 | 17 Odeurs et Heuristiques| Quiz et test

1.Les commentaires ne doivent jamais contenir de

données historiques adaptées aux systèmes de

versionnement.

2.Les fonctions peuvent avoir un nombre quelconque

d'arguments sans affecter la clarté du code.

3.Il est acceptable d'avoir plusieurs langages de

programmation dans un seul fichier source pour des raisons

de flexibilité.

Chapitre 17 | A : Concurrence II| Quiz et test

1.Le multithreading peut aider à améliorer le débit

si l'application est liée au CPU.

2.Les goulets d'étranglement de performance peuvent se

produire à la fois en raison de limites d'I/O et d'utilisation

du processeur.

3.Les modèles de conception pour la gestion des threads

doivent se concentrer uniquement sur la fusion des

responsabilités pour simplifier le code.

Chapitre 18 | B: org.jfree.date.SerialDate| Quiz et

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

test

1.La classe SerialDate est conçue pour être mutable,

permettant aux instances d'être modifiées après

leur création.

2.SerialDate garantit la compatibilité avec les exigences de

gestion des dates d'Excel.

3.La classe SerialDate inclut des méthodes pour retourner le

jour de la semaine et pour gérer les conversions de chaînes

pour les représentations de dates.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 19 | C : Références croisées des
heuristiques| Quiz et test

1.L'annexe fournit une référence croisée détaillée de

diverses heuristiques et mauvaises pratiques du

livre 'CODER PROPREMENT'.

2.Des heuristiques sont listées dans l'annexe, allant de C1 à

T9.

3.Les termes G1 à G10 dans l'annexe font référence à des

langages de programmation spécifiques.

Chapitre 20 | Index| Quiz et test

1.Les classes abstraites et les interfaces ne sont pas

nécessaires pour une bonne abstraction et une

bonne structuration du code.

2.La loi de Demeter souligne le couplage minimal et la

facilité de maintenance, mettant en avant l'utilisation de

fonctions d'accès.

3.Écrire des tests qui se valident eux-mêmes réduit le nombre

de dépendances et n'est pas essentiel pour les pratiques de

CODER PROPREMENT.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 21 | Introduction Préalable| Quiz et test

1.L'auteur souligne l'importance du

professionnalisme en programmation en

s'appuyant sur des expériences personnelles

spanning over 421 ans.

2.L'auteur a tiré des leçons précieuses sur le

professionnalisme et l'importance de quitter un emploi en

bons termes après avoir connu le chômage.

3.L'auteur pense que devenir un professionnel est un

événement unique qui se termine après avoir acquis

quelques expériences initiales.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 22 | 1 Professionnalisme| Quiz et test

1.Les développeurs de logiciels professionnels

rejettent principalement la faute sur leurs actions

plutôt que de prendre leurs responsabilités.

2.L'apprentissage continu et la pratique sont essentiels pour

maintenir un standard professionnel dans le développement

de logiciels.

3.Comprendre le domaine dans lequel vous travaillez est

optionnel pour un développeur de logiciels professionnel.

Chapitre 23 | 2 Dire Non| Quiz et test

1.Les professionnels devraient toujours accepter les

demandes de leurs supérieurs pour être considérés

comme des joueurs d'équipe.

2.Dire non est particulièrement important dans des situations

à enjeux élevés selon Robert C. Martin.

3.L'auteur considère que les promesses vagues et le concept

d''essayer'' sont acceptables dans les milieux

professionnels.

Chapitre 24 | 3 Dire Oui| Quiz et test

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

1.Dire 'faisons' indique un véritable engagement

selon le chapitre.

2.Un véritable engagement implique de dire que vous le

ferez, de le penser réellement et de le faire.

3.Communiquer les défis lorsque les engagements ne

peuvent pas être respectés est inutile et peut entraîner de la

confusion.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 25 | 4 Codage| Quiz et test

1.Coder en étant fatigué ou distrait mène à des

résultats médiocres.

2.Écouter de la musique améliore toujours la concentration

en codant.

3.Une gestion efficace des retards implique des évaluations

de progrès honnêtes et basées sur des faits.

Chapitre 26 | 5 Développement Driven par les Tests|
Quiz et test

1.Le développement piloté par les tests (TDD) a été

largement adopté dans les méthodologies Agile

depuis son apparition il y a plus de dix ans.

2.Selon les trois lois du TDD, on peut écrire du code de

production avant de créer un test unitaire échouant.

3.Le TDD garantit que les développeurs produiront un code

bien conçu sans avoir besoin de refactoring.

Chapitre 27 | 6 Pratiquer| Quiz et test

1.Tous les professionnels pratiquent leur art pour

améliorer leurs compétences, y compris les

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

programmeurs.

2.Le Coding Dojo est un concept qui décourage la

collaboration entre programmeurs.

3.S'exercer sur son temps libre est rare pour les

programmeurs et n'est pas recommandé pour le

développement des compétences.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 28 | 7 Tests d'acceptation| Quiz et test

1.Les développeurs professionnels devraient mettre

l'accent sur l'exactitude de la communication avec

les membres de l'équipe et les parties prenantes.

2.Les tests d’acceptation ne sont pas importants pour établir

des attentes claires et une communication entre les

développeurs et les parties prenantes.

3.Les développeurs devraient implémenter des

fonctionnalités avant que les tests d’acceptation soient

finalisés et acceptés.

Chapitre 29 | 8 Stratégies de test| Quiz et test

1.Une stratégie de test complète n'inclut que les tests

unitaires et d'acceptation.

2.Les chasses aux bugs collaboratives favorisent

l'engagement de l'équipe et la responsabilité en matière de

qualité.

3.L'objectif principal du QA est de s'assurer qu'il trouve des

problèmes dans le système.

Chapitre 30 | 9 Gestion du Temps| Quiz et test

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

1.Les réunions sont toujours une partie nécessaire

de la productivité selon Robert C. Martin.

2.La technique Pomodoro consiste à travailler pendant 25

minutes suivies de pauses pour maintenir la concentration.

3.Il est déconseillé de décliner les invitations aux réunions à

moins d'avoir des raisons valables.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 31 | 10 Estimation| Quiz et test

1.Les développeurs considèrent les estimations

comme des engagements, tandis que les parties

prenantes du secteur les voient comme des

suppositions éclairées.

2.Une estimation efficace nécessite de comprendre que les

estimations représentent une gamme de possibilités plutôt

qu'une date fixe.

3.La méthode Wideband Delphi de Barry Boehm implique

des discussions en équipe et des estimations séquentielles

jusqu'à ce qu'un accord soit atteint.

Chapitre 32 | 11 La Pression| Quiz et test

1.Il est important que les professionnels gardent leur

calme sous pression selon le Chapitre 32 de

'CODER PROPREMENT'.

2.Prendre des raccourcis dans les pratiques de codage est une

stratégie recommandée pour gérer efficacement la pression.

3.Des pratiques efficaces doivent être maintenues même dans

des situations de crise selon les principes exposés dans

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

'CODER PROPREMENT'.

Chapitre 33 | 12 Collaboration| Quiz et test

1.La plupart des logiciels sont créés par des équipes,

et une collaboration efficace est essentielle pour le

succès de l'équipe.

2.Les programmeurs trouvent les relations interpersonnelles

faciles et agréables, préférant travailler de manière

indépendante.

3.La programmation en binôme diminue l'efficacité de la

résolution de problèmes et réduit le partage des

connaissances entre les programmeurs.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 34 | 13 Équipes et Projets| Quiz et test

1.L'allocation de ressources entre plusieurs petits

projets entraîne souvent une meilleure cohésion et

efficacité au sein de l'équipe.

2.Une équipe bien rodée se compose généralement d'un

mélange de programmeurs, de testeurs, d'analystes et d'un

chef de projet, avec une taille optimale d'environ douze

membres.

3.Les organisations réussies préfèrent former de nouvelles

équipes pour chaque projet plutôt que de construire des

équipes autour de structures existantes bien rodées.

Chapitre 35 | 14 Mentorat, Apprentissages, et
Artisanat| Quiz et test

1.Robert C. Martin pense que de nombreux

diplômés en informatique sont prêts pour des

postes de programmation dès la sortie de

l'université.

2.Le mentorat structuré dans l'industrie du logiciel est aussi

rigoureux que dans la profession médicale selon Martin.

Scanner pour télécharger

https://share.bookey.app/KNYZ6NPRcEb
https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

3.L'artisanat dans le logiciel est défini comme l'état d'esprit

incarnant compétence, qualité et professionnalisme.

Chapitre 36 | A : Outils| Quiz et test

1.Le verrouillage pessimiste encourage l'édition

simultanée entre différents développeurs.

2.Les systèmes de contrôle de version modernes comme git

permettent des branches et des fusions spontanées,

améliorant ainsi la dynamique de la programmation

collaborative.

3.Jenkins n'est pas recommandé pour les processus de build

continu en raison de son manque de capacités de retour

d'information en temps réel.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

Scanner pour télécharger

Chapitre 37 | Index| Quiz et test

1.Les tests d'acceptation ne sont nécessaires qu'à la

fin du processus de développement logiciel.

2.Les tests d'acceptation automatisés aident à mieux

s'intégrer aux pratiques d'intégration continue.

3.Une communication claire n'est pas importante dans la

gestion de projet ; les malentendus sont attendus.

https://share.bookey.app/KNYZ6NPRcEb

https://share.bookey.app/KNYZ6NPRcEb

